Sign In

Bernoulli's equation incorporates how fluid pressure changes across a static, incompressible fluid by equating the kinetic energy contribution to zero. It is also helpful in analyzing horizontal flows in which the gravitational energy density is constant throughout. The latter equation is so useful that it is called Bernoulli's principle. According to Bernoulli's principle, the fluid pressure drops if the speed increases and vice versa.

Bernoulli's principle has several applications. It is used to implement a phenomenon called entrainment, wherein one fluid is used to change the pressure of a region accessible to another fluid. This pressure difference then affects the motion of the second fluid. Bernoulli's principle is also helpful in measuring the unknown speed of a fluid.

Consider a manometer, which is a tube with two openings. One opening directly opposes the fluid flow, causing it to come to rest abruptly in front of it. The other is along the fluid flow. The tube contains a liquid of known density. Since the speed of the incoming fluid is different across its ends, the pressure is also different. By applying Bernoulli's principle, it can be shown that the pressure difference is proportional to the square of the speed of the incoming fluid. This pressure difference, in turn, causes the liquid inside the manometer to have different heights on the two ends. Since the height difference is proportional to the pressure difference across the two ends, it is proportional to the square of the incoming fluid's speed. Thus, by measuring the height difference of the liquid inside the manometer, the speed of the incoming fluid is determined.

This text is adapted from Openstax, University Physics Volume 1, Section 14.6: Bernoulli's Equation.

Tags
Bernoulli s PrincipleFluid PressureKinetic EnergyStatic Incompressible FluidHorizontal FlowsGravitational Energy DensityEntrainmentPressure DifferenceFluid MotionManometerLiquid DensitySpeed MeasurementHeight DifferencePressure Difference Equation

From Chapter 13:

article

Now Playing

13.19 : Bernoulli's Principle

Fluid Mechanics

7.2K Views

article

13.1 : Characteristics of Fluids

Fluid Mechanics

2.9K Views

article

13.2 : Density

Fluid Mechanics

10.0K Views

article

13.3 : Pressure of Fluids

Fluid Mechanics

8.9K Views

article

13.4 : Variation of Atmospheric Pressure

Fluid Mechanics

1.6K Views

article

13.5 : Pascal's Law

Fluid Mechanics

6.3K Views

article

13.6 : Application of Pascal's Law

Fluid Mechanics

6.5K Views

article

13.7 : Pressure Gauges

Fluid Mechanics

1.8K Views

article

13.8 : Buoyancy

Fluid Mechanics

4.1K Views

article

13.9 : Archimedes' Principle

Fluid Mechanics

6.1K Views

article

13.10 : Density and Archimedes' Principle

Fluid Mechanics

6.1K Views

article

13.11 : Accelerating Fluids

Fluid Mechanics

860 Views

article

13.12 : Surface Tension and Surface Energy

Fluid Mechanics

1.0K Views

article

13.13 : Excess Pressure Inside a Drop and a Bubble

Fluid Mechanics

1.3K Views

article

13.14 : Contact Angle

Fluid Mechanics

10.2K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved