Sign In

15.14 : C–C Bond Formation: Aldol Condensation Overview

Aldol condensation is an important route in synthetic organic chemistry used to generate a new carbon–carbon bond under basic or acidic conditions. The aldol condensation reaction presented in Figure 1 constitutes an aldol addition reaction followed by the dehydration process.

Figure1

Figure 1. The general aldol addition reaction of aldehydes.

Aldol addition reactions are reversible and are of two types: self-addition and crossed-addition. Combining two identical carbonyl compounds is called self-addition. As shown in Figure 2, the reaction between two different carbonyl compounds is called crossed-addition. Of the two carbonyl compounds involved in the reaction, one functions as a nucleophile and the other as an electrophile.

Figure2

Figure 2. The crossed aldol addition reaction of aldehydes.

The two types of aldol addition reactions produce a β-hydroxy carbonyl as the aldol addition product. While a self-addition reaction yields a single aldol product, a crossed-addition results in a mixture of products, decreasing the reaction's usefulness in organic chemistry. Accordingly, the choice of reactants is paramount in defining the efficacy of the reaction.

Figure 3 depicts the subsequent dehydration of a β-hydroxy carbonyl compound under suitable reaction conditions to form the corresponding condensation product.

Figure3

Figure 3. The dehydration reaction of aldols.

Tags
Aldol CondensationSynthetic Organic ChemistryCarbon carbon BondAldol AdditionReversible ReactionsSelf additionCrossed additionCarbonyl CompoundsNucleophileElectrophilehydroxy CarbonylDehydration ReactionReaction Conditions

From Chapter 15:

article

Now Playing

15.14 : C–C Bond Formation: Aldol Condensation Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

10.4K Views

article

15.1 : Reactivity of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.2 : Reactivity of Enolate Ions

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.2K Views

article

15.3 : Types of Enols and Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.4 : Enolate Mechanism Conventions

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.5 : Regioselective Formation of Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.6 : Stereochemical Effects of Enolization

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.7 : Acid-Catalyzed α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.8 : Base-Promoted α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.9 : Multiple Halogenation of Methyl Ketones: Haloform Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.7K Views

article

15.10 : α-Halogenation of Carboxylic Acid Derivatives: Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.11 : α-Bromination of Carboxylic Acids: Hell–Volhard–Zelinski Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.7K Views

article

15.12 : Reactions of α-Halocarbonyl Compounds: Nucleophilic Substitution

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.13 : Nitrosation of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.15 : Base-Catalyzed Aldol Addition Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.7K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved