Sign In

29.20 : Diamagnetism

Materials consisting of paired electrons have zero net magnetic moments. However, when these materials are placed under an external magnetic field, the moments opposite to the field are induced. Such materials are called diamagnets. Diamagnetism is the response of the diamagnets when placed in an external magnetic field.

Diamagnetism was discovered by Anton Brugmans in 1778 when he observed that bismuth gets repelled by magnetic fields, thus theorizing that diamagnets get repelled by magnets. When placed under a non-uniform external magnetic field, diamagnets tend to move from the stronger to the weaker magnetic field region. Since diamagnets repel the magnetic field, their magnetic permeability is less than unity.

When a magnetic field is applied to a material, it gets magnetized. The applied field is generally expressed as magnetic field intensity. The resultant magnetic field is the sum of the applied magnetic field and the field due to the magnetization. The magnetization is very small and antiparallel to the applied magnetic field. The ratio of the magnetization to the magnetic field intensity is known as the susceptibility. The susceptibility for diamagnets is a minimal negative value of 10-5–10-6Since diamagnetism occurs due to the orbital motion of electrons independent of temperature, the susceptibility value is also temperature independent for diamagnets.

When placed in an external magnetic field, all materials have a diamagnetic contribution. For paramagnetic and ferromagnetic materials, the diamagnetic contribution is very small, and thus can be neglected.

Tags
DiamagnetismDiamagnetsExternal Magnetic FieldMagnetic MomentsMagnetic PermeabilityMagnetizationMagnetic SusceptibilityBismuthAnton BrugmansElectron MotionTemperature IndependenceMagnetization RatioMagnetic Field Intensity

From Chapter 29:

article

Now Playing

29.20 : Diamagnetism

Sources of Magnetic Fields

2.1K Views

article

29.1 : Magnetic Field due to Moving Charges

Sources of Magnetic Fields

7.2K Views

article

29.2 : Biot-Savart Law

Sources of Magnetic Fields

5.0K Views

article

29.3 : Biot-Savart Law: Problem-Solving

Sources of Magnetic Fields

1.9K Views

article

29.4 : Magnetic Field Due To A Thin Straight Wire

Sources of Magnetic Fields

4.2K Views

article

29.5 : Magnetic Field Due to Two Straight Wires

Sources of Magnetic Fields

1.9K Views

article

29.6 : Magnetic Force Between Two Parallel Currents

Sources of Magnetic Fields

2.9K Views

article

29.7 : Magnetic Field Of A Current Loop

Sources of Magnetic Fields

3.8K Views

article

29.8 : Divergence and Curl of Magnetic Field

Sources of Magnetic Fields

2.4K Views

article

29.9 : Ampere's Law

Sources of Magnetic Fields

3.3K Views

article

29.10 : Ampere's Law: Problem-Solving

Sources of Magnetic Fields

3.2K Views

article

29.11 : Solenoids

Sources of Magnetic Fields

2.2K Views

article

29.12 : Magnetic Field of a Solenoid

Sources of Magnetic Fields

3.3K Views

article

29.13 : Toroids

Sources of Magnetic Fields

2.6K Views

article

29.14 : Magnetic Vector Potential

Sources of Magnetic Fields

377 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved