Sign In

Combined Effects of Drugs: Synergism

Synergism is a useful mechanism where combining two or more drugs is more effective than each constituent used alone. Such combinations are also called supra-additive interactions. The drugs collectively enhance the final therapeutic effect by acting on different targets. Another advantage is that the low dose of each constituent drug is sufficient to achieve the desired effect. This helps reduce the duration of therapy and lower the adverse effects of these drugs.

Such synergistic combinations of antibiotics help reduce the minimum inhibitory concentration (MIC) of each by four-fold or more. Synergistic combinations of antibiotics are useful when an infectious agent is unknown or when pathogens have populations of varying drug sensitivity, such as Mycobacterium tuberculosis.

Combining trimethoprim and sulfamethoxazole represents one of the most effective treatments for urinary tract infections. This combination works by inhibiting the activity of two different enzymes involved in the folate pathway, which block the synthesis of purines, the building blocks of DNA. The unavailability of purines impedes DNA synthesis, which ultimately kills the bacteria. Other antibiotic combinations use cell wall-active drugs, such as penicillins, which enhance the permeability of drugs, combined with aminoglycosides, which act on intracellular targets, like 30S ribosomes. These combinations prove highly effective in treating such infections as bacterial endocarditis caused by Enterococcal endocarditis.

In addition, some drugs do not have their own effects but potentiate the effect of other drugs in combination. One useful interaction is between β-lactamase inhibitors such as clavulanic acid and β-lactamase susceptible penicillins. Antibiotics such as penicillins and cephalosporins have β-lactam rings. The bacterial β-lactamase enzyme hydrolyses these rings, making these drugs inactive and leading to the emergence of antibiotic resistance. Using β-lactamase inhibitors and such antibiotics helps overcome the resistance that these bacterial enzymes generate.

Tags
SynergismSupra additive InteractionsTherapeutic EffectDrug CombinationsMinimum Inhibitory Concentration MICTrimethoprimSulfamethoxazoleUrinary Tract InfectionsFolate PathwayDNA SynthesisPenicillinsAminoglycosidesBacterial EndocarditisClavulanic AcidAntibiotic Resistance

From Chapter undefined:

article

Now Playing

Combined Effects of Drugs: Synergism

Related Videos

1.5K Views

article

Principles of Drug Action

Related Videos

4.3K Views

article

Targets for Drug Action: Overview

Related Videos

2.8K Views

article

Signal Transduction: Overview

Related Videos

7.4K Views

article

Transducer Mechanism: G Protein–Coupled Receptors

Related Videos

1.1K Views

article

Ligand-Gated Ion Channel Receptor: Gating Mechanism

Related Videos

1.4K Views

article

Transducer Mechanism: Enzyme-Linked Receptors

Related Videos

1.6K Views

article

Transducer Mechanism: Nuclear Receptors

Related Videos

829 Views

article

Dose-Response Relationship: Overview

Related Videos

1.6K Views

article

Dose-Response Relationship: Potency and Efficacy

Related Videos

2.3K Views

article

Dose-Response Relationship: Selectivity and Specificity

Related Videos

4.5K Views

article

Therapeutic Index

Related Videos

3.0K Views

article

Drug-Receptor Interaction: Agonist

Related Videos

1.4K Views

article

Drug-Receptor Interaction: Antagonist

Related Videos

1.5K Views

article

Combined Effects of Drugs: Antagonism

Related Videos

5.4K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved