Sign In

4.9 : Dose-Response Relationship: Potency and Efficacy

The potency of a drug is the measure of its ability to produce a biological response and can be compared by looking at the half-maximum effective concentration or EC50 values of different drugs. A lower EC50 value indicates higher potency of the drug. In the dose–response curve of two antihypertensive drugs, candesartan and irbesartan, a significant difference is observed in their EC50 values. A lower EC50 value for candesartan indicates that it is more potent than irbesartan, as it produces the same desired effect at a lower dose. It is noteworthy that both drugs exhibit similar maximum effect or Emax values, implying that they possess equal efficacy. Efficacy depends on the number of drug–receptor complexes formed and the extent of receptor activation. Maximal efficacy is achieved when all receptors are occupied, rendering further increases in drug concentration incapable of eliciting additional responses. Full agonists have high efficacy, as they activate receptors entirely and elicit a complete response. The efficacy of partial agonists is lower, as they activate receptors to a lesser extent. Antagonists, in contrast, exhibit zero efficacy by not activating the receptors. Instead, they act as blockers and either reduce the number of available receptors for agonist binding or induce conformational changes that prevent effective agonist binding. Overall, these factors play a crucial role in determining the efficacy and potency of drugs, which, in turn, can determine their usefulness in treating various medical conditions.

Tags
Dose response RelationshipPotencyEfficacyEC50 ValuesCandesartanIrbesartanMaximum EffectEmax ValuesDrug receptor ComplexesReceptor ActivationFull AgonistsPartial AgonistsAntagonistsDrug ConcentrationMedical Treatment

From Chapter 4:

article

Now Playing

4.9 : Dose-Response Relationship: Potency and Efficacy

Pharmacodynamics

2.7K Views

article

4.1 : Principles of Drug Action

Pharmacodynamics

4.7K Views

article

4.2 : Targets for Drug Action: Overview

Pharmacodynamics

3.7K Views

article

4.3 : Signal Transduction: Overview

Pharmacodynamics

7.6K Views

article

4.4 : Transducer Mechanism: G Protein–Coupled Receptors

Pharmacodynamics

1.2K Views

article

4.5 : Ligand-Gated Ion Channel Receptor: Gating Mechanism

Pharmacodynamics

1.6K Views

article

4.6 : Transducer Mechanism: Enzyme-Linked Receptors

Pharmacodynamics

1.8K Views

article

4.7 : Transducer Mechanism: Nuclear Receptors

Pharmacodynamics

885 Views

article

4.8 : Dose-Response Relationship: Overview

Pharmacodynamics

1.8K Views

article

4.10 : Dose-Response Relationship: Selectivity and Specificity

Pharmacodynamics

5.1K Views

article

4.11 : Therapeutic Index

Pharmacodynamics

3.2K Views

article

4.12 : Drug-Receptor Interaction: Agonist

Pharmacodynamics

1.6K Views

article

4.13 : Drug-Receptor Interaction: Antagonist

Pharmacodynamics

1.7K Views

article

4.14 : Combined Effects of Drugs: Antagonism

Pharmacodynamics

6.3K Views

article

4.15 : Combined Effects of Drugs: Synergism

Pharmacodynamics

2.2K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved