JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Disclosures
  • References
  • Reprints and Permissions

Summary

In this interview, Jason Rasgon explains the concept of genetic drive and the characteristics of an effective gene drive system. The use of the endosymbiotic bacterium, Wolbachia pipientis, as a means to spread genes through mosquito populations, is hypothesized.

Abstract

In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.

Disclosures

The authors have nothing to disclose.

References

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Population Replacement StrategiesControlling Vector PopulationsWolbachia PipientisGenetic DriveVector borne DiseasesMalaria ControlDengue ControlSymbiotic BacteriaWolbachia Biology

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved