JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Protocol

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Quantitative Analyses of all Influenza Type A Viral Hemagglutinins and Neuraminidases using Universal Antibodies in Simple Slot Blot Assays

Published: April 4th, 2011

DOI:

10.3791/2784

1Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health canada, 2National Institute for the Control of Pharmaceutical and Biological Products, The State Food and Drug Administration, Beijing, 3Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 4Microbiology Department, Faculty of Medicine, King Abdulaziz University, 5National Microbiology Laboratory, Public Health Agency of Canada
* These authors contributed equally

ERRATUM NOTICE

Important: There has been an erratum issued for this article. Read more …

A simple slot blot method was developed for the quantification of influenza viral hemagglutinin and neuraminidase using universal antibodies targeting their most conserved sequences identified through bioinformatics analyses. This innovative approach may provide a useful alternative to quantitative determination of all viral hemagglutinin and neuraminidase.

Hemagglutinin (HA) and neuraminidase (NA) are two surface proteins of influenza viruses which are known to play important roles in the viral life cycle and the induction of protective immune responses1,2. As the main target for neutralizing antibodies, HA is currently used as the influenza vaccine potency marker and is measured by single radial immunodiffusion (SRID)3. However, the dependence of SRID on the availability of the corresponding subtype-specific antisera causes a minimum of 2-3 months delay for the release of every new vaccine. Moreover, despite evidence that NA also induces protective immunity4, the amount of NA in influenza vaccines is not yet standardized due to a lack of appropriate reagents or analytical method5. Thus, simple alternative methods capable of quantifying HA and NA antigens are desirable for rapid release and better quality control of influenza vaccines.

Universally conserved regions in all available influenza A HA and NA sequences were identified by bioinformatics analyses6-7. One sequence (designated as Uni-1) was identified in the only universally conserved epitope of HA, the fusion peptide6, while two conserved sequences were identified in neuraminidases, one close to the enzymatic active site (designated as HCA-2) and the other close to the N-terminus (designated as HCA-3)7. Peptides with these amino acid sequences were synthesized and used to immunize rabbits for the production of antibodies. The antibody against the Uni-1 epitope of HA was able to bind to 13 subtypes of influenza A HA (H1-H13) while the antibodies against the HCA-2 and HCA-3 regions of NA were capable of binding all 9 NA subtypes. All antibodies showed remarkable specificity against the viral sequences as evidenced by the observation that no cross-reactivity to allantoic proteins was detected. These universal antibodies were then used to develop slot blot assays to quantify HA and NA in influenza A vaccines without the need for specific antisera7,8. Vaccine samples were applied onto a PVDF membrane using a slot blot apparatus along with reference standards diluted to various concentrations. For the detection of HA, samples and standard were first diluted in Tris-buffered saline (TBS) containing 4M urea while for the measurement of NA they were diluted in TBS containing 0.01% Zwittergent as these conditions significantly improved the detection sensitivity. Following the detection of the HA and NA antigens by immunoblotting with their respective universal antibodies, signal intensities were quantified by densitometry. Amounts of HA and NA in the vaccines were then calculated using a standard curve established with the signal intensities of the various concentrations of the references used.

Given that these antibodies bind to universal epitopes in HA or NA, interested investigators could use them as research tools in immunoassays other than the slot blot only.

1. Preparation of reagents and equipment

  1. Before starting the slot blot procedure, prepare 20_mls of 4M urea solution in Tris-buffered saline (20 mM Tris, 137 mM NaCl, pH 7.6) (TBS) for the hemagglutinin, or HA, slot blot, or 20_mls of a 0.01% Zwittergent solution in TBS for the neuraminidase, or NA, slot blot. While 4M urea should be prepared fresh every time, a 10% Zwittergent stock solution in dH2O is stable for at least 6 months at room temperature and can therefore be diluted to 0.01% in TBS b.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Quantitative determination of influenza viral HA and NA are critical for vaccine research and development since these two surface proteins are most important viral components inducing immune responses6-11. Previously reported immunological methods for the detection of these proteins require strain specific antibodies. The simple, reproducible and rapid slot blot method to quantify the HA and NA antigens described here are suitable for all influenza A viral HA and NA proteins since the antibodies recognize thei.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Mrs. Monika Tocchi for editorial review of the manuscript. AMH is supported by a Scholarship from King Abdulaziz University, through the Saudi Arabian Cultural Bureau in Canada.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Name of the reagent or equipmentCompanyCatalogue numberComments
Bio-Dot SF Microfiltration ApparatusBio-Rad170-6542 
Bio-Dot SF Filter paperBio-Rad162-0161 
Immobilon-FL transfer membrane (PVDF)MilliporeIPFL00010 
Vacuum pumpMilliporeWP6111560 
Chemiluminescence BioMax Light FilmKodak178 8207 
FluorChem Gel Documentation SystemAlpha Innotech29-008-1896X 
Universal rabbit antibodies against HA and NA antigens Uni-1 (HA) HCA-2, HCA-3 (NA) Antibodies are available through MTA or can be generated by interested investigators according to the procedures previously described6,7.
Influenza vaccine reference antigenCBER/FDA or NIBSC  
Influenza vaccine samples  Commonly available in most countries
UreaSigma-AldrichU1250 
Zwittergent 3-14 DetergentCalbiochem693017 
Tween-20Fisher ScientificBP337-500 
Blotting Grade Blocker Non-fat dry milkBio-Rad170-6404 
ImmunoPure Goat Anti-Rabbit IgG, (H+L), Peroxidase ConjugatedThermo Scientific31460 
SuperSignal West Dura Extended Duration SubstrateThermo Scientific34075 

  1. Webster, R. G., Bean, W. J. Genetics of influenza virus. Annu Rev Genet. 12, 415-431 (1978).
  2. Skehel, J. J., Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 69, 531-569 (2000).
  3. Wood, J. M. The influence of the host cell on standardisation of influenza vaccine potency. Dev Biol Stand. 98, 183-188 (1999).
  4. Sylte, M. J., Suarez, D. L. Influenza neuraminidase as a vaccine antigen. Curr Top Microbiol Immunol. 333, 227-241 (2009).
  5. Bright, R. A., Neuzil, K. M., Pervikov, Y., Palkonyay, L. WHO meeting on the role of neuraminidase in inducing protective immunity against influenza infection. Vaccine. 27, 6366-6369 (2008).
  6. Chun, S. Universal antibodies and their applications to the quantitative determination of virtually all subtypes of the influenza A viral hemagglutinins. Vaccine. 26, 6068-6076 (2008).
  7. Gravel, C. Qualitative and quantitative analyses of virtually all subtypes of influenza A and B viral neuraminidases using antibodies targeting the universally conserved sequences. Vaccine. 28, 5774-5784 (2010).
  8. Li, C. A simple slot blot for the detection of virtually all subtypes of the influenza A viral hemagglutinins using universal antibodies targeting the fusion peptide. Nat Protoc. 5, 14-19 (2010).
  9. Harvey, R., Wheeler, J. X., Wallis, C. L., Robertson, J. S., Engelhardt, O. G. Quantitation of haemagglutinin in H5N1 influenza viruses reveals low haemagglutinin content of vaccine virus NIBRG-14 (H5N1). Vaccine. 26, 6550-6554 (2008).
  10. Li, C. Application of deglycosylation and electrophoresis to the quantification of influenza viral hemagglutinins facilitating the production of 2009 pandemic influenza (H1N1) vaccines at multiple manufacturing sites in China. Biologicals. 38, 284-289 (2010).
  11. Johansson, B. E., Pokorny, B. A., Tiso, V. A. Supplementation of conventional trivalent influenza vaccine with purified viral N1 and N2 neuraminidases induces a balanced immune response without antigenic competition. Vaccine. 20, 1670-1674 (2002).
  12. Hashem, A. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus. Biochem Biophys Res Comm. , (2010).

Erratum

Erratum: Quantitative Analyses of all Influenza Type A Viral Hemagglutinins and Neuraminidases using Universal Antibodies in Simple Slot Blot Assays

An author's affiliation was omitted from the publication of Quantitative Analyses of all Influenza Type A Viral Hemagglutinins and Neuraminidases using Universal Antibodies in Simple Slot Blot Assays.

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved