A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Key techniques to be used in the evaluation of Candida vaginitis in an experimental animal model are described. The methods will allow rapid collection of vaginal specimens and lymphocytes from draining lumbar lymph nodes. These techniques could give rise to mouse models of other diseases in the female lower genital tract.
Vulvovaginal candidiasis (VVC), caused by Candida species, is a fungal infection of the lower female genital tract that affects approximately 75% of otherwise healthy women during their reproductive years18,32-34. Predisposing factors include antibiotic usage, uncontrolled diabetes and disturbance in reproductive hormone levels due to pregnancy, oral contraceptives or hormone replacement therapies33,34. Recurrent VVC (RVVC), defined as three or more episodes per year, affects a separate 5 to 8% of women with no predisposing factors33.
An experimental mouse model of VVC has been established and used to study the pathogenesis and mucosal host response to Candida3,4,11,16,17,19,21,25,37. This model has also been employed to test potential antifungal therapies in vivo13,24. The model requires that the animals be maintained in a state of pseudoestrus for optimal Candida colonization/infection6,14,23. Under such conditions, inoculated animals will have detectable vaginal fungal burden for weeks to months. Past studies show an extremely high parallel between the animal model and human infection relative to immunological and physiological properties3,16,21. Differences, however, include a lack of Candida as normal vaginal flora and a neutral vaginal pH in the mice.
Here, we demonstrate a series of key methods in the mouse vaginitis model that include vaginal inoculation, rapid collection of vaginal specimens, assessment of vaginal fungal burden, and tissue preparations for cellular extraction/isolation. This is followed by representative results for constituents of vaginal lavage fluid, fungal burden, and draining lymph node leukocyte yields. With the use of anesthetics, lavage samples can be collected at multiple time points on the same mice for longitudinal evaluation of infection/colonization. Furthermore, this model requires no immunosuppressive agents to initiate infection, allowing immunological studies under defined host conditions. Finally, the model and each technique introduced here could potentially give rise to use of the methodologies to examine other infectious diseases of the lower female genital tract (bacterial, parasitic, viral) and respective local or systemic host defenses.
1. Vaginal inoculation with Candida albicans
2. Vaginal lavages
3. Quantification of vaginal fungal burden
4. Vaginal tissue extraction
5. Lumbar lymph node excision
6. Isolation of lymphoid cells in single-cell suspensions
7. Representative Results:
The cellular fractions of vaginal lavage fluid from >4-day inoculated mice typically consist of Candida, epithelial cells and cellular infiltrates (Figure 5). By wet-mount microscopy, Candida can be visually identified by the presence of hyphae as well as yeast (Figure 5A). Smear preparations of vaginal lavage fluid can be stained by Papanicolaou technique to examine epithelial cells and infiltrating leukocytes, of which the principal cells are neutrophils identified by the tri-nuclear lobes (Figure 5B). Very few neutrophils, if any, are detected in uninoculated mice (Figure 5C)41.
An example of vaginal fungal burden is shown in Figure 6. Vaginal lavage fluid collected at specific time points are cultured for CFU enumeration (Figure 6A). Vaginal colonization/infection with Candida persists for weeks in estrogen-treated inoculated mice (Figure 6B), while Candida fails to establish vaginal colonization in non-estrogen-treated inoculated mice (Figure 6C). Estrogen-treated uninoculated mice remain negative for Candida throughout the time (data not shown). In addition, vaginal lavages can be performed either one time on separate mice at each time point or longitudinally in the same mice under anesthesia.
The lumbar lymph nodes are the primary draining lymph nodes of the genital tract and the most relevant site to evaluate for systemic immune responses to a vaginal challenge. Note that these lymph nodes may become enlarged in inoculated mice while they normally appear quite small in uninoculated mice. Leukocyte cellular recoveries typically range from 8 × 105/uninoculated mouse to 5 ×106/inoculated mouse. In addition to lumbar lymph nodes, inguinal, popliteal and mesenteric lymph nodes can also be used.
Figure 1. Vaginal inoculation with Candida. A) A mouse restrained for inoculation. The mouse is placed on a wire cage insert and held by the base of the tail, slightly upward to lift the legs and expose the vaginal opening. The hip of the mouse can be stabilized with the same hand as it attempts to resist the tail restraint. B) Introduction of the inoculum into the vaginal lumen. A pipette tip is gently inserted about 5 mm deep into the vaginal lumen. The suspension inoculum is then deposited.
Figure 2. Vaginal tissue extraction. A-B) Extraction of the cervix. The cervix is located with curved forceps and exposed outward through the vaginal cavity. Once out of the vaginal cavity, the cervix is further pulled outward to fully expose the vagina. C) Extraction of the vagina. The vagina is excised from the vulva with scissors. Once detached, remove the cervix from the vagina.
Figure 3. Identification of the lumbar lymph nodes. The location of the lumbar lymph nodes among the surrounding organs/blood vessels in the vicinity of the pelvis is indicated. A, abdominal aorta. B, urinary bladder. C, common iliac artery. I, intestines. L, liver. R, rectum. S, spleen. U, Uteri.
Figure 4. The lumbar lymph nodes placed on a wire mesh screen. The lymph nodes are pooled onto the screen placed in a petri dish with HBSS. The lymph nodes are pressed against the screen with a syringe plunger to obtain lymphoid cells in single-cell suspensions.
Figure 5. Cellular fractions of vaginal lavage fluid from inoculated mice. A) Wet-mount and B) Pap smear preparations of vaginal lavage samples collected 4 days post-inoculation and C) from uninoculated mice. Images are shown at 1000× (A) or 400× (B, C) magnification. The insert in B shows the nuclear morphology of vaginal neutrophils at 1000× . Candida yeast (Y) and hyphae (H), epithelial cells (EC) and neutrohils (N) are indicated.
Figure 6. Detection of vaginal fungal burden. A) Representative C. albicans colonies grown on a SDA plate. Neat (N) lavage samples from six different inoculated mice (top row) were serially diluted and cultured for CFU enumeration. B) Quantification of vaginal fungal burden in estrogen-treated and C) non-estrogen-treated mice. CFU/100 μl of lavage fluid from inoculated mice was assessed on indicated time points.
An experimental mouse model of Candida vaginitis has been established and historically used for the past few decades to study mucosal host response to Candida as well as for testing antifungal therapies3,4,11,13,16,17,19,21,24,25,37. The protocols presented here incorporate efficient and less labor-intensive methods, and appear to be one of the most optimized model systems of Candida vaginitis described to date. These techniques enable rapid quantification of fungal burden and collec...
No conflicts of interest declared.
This work was supported by R01 AI32556 (NIAID, National Institute of Health). This work was also supported in part by Louisiana Vaccine Center and South Louisiana Institute for Infectious Disease Research sponsored by the Louisiana Board of Regents.
Name | Company | Catalog Number | Comments |
Female CBA/J mice | Charles River Laboratories | 01C38 | 5-6 weeks of age |
Candida albicans (3153A) | National Collection of Pathogenic Fungi, UK | NCPF3153 | |
Sesame oil | Sigma-Aldrich | S3547 | D–s not need to be pre-sterilized before use |
Β-estradiol 17-valerate | Sigma-Aldrich | E1631 | 0.1-0.5mg in sesame oil |
Phytone peptone | BD Biosciences | 211906 | Supplement with 0.1% glucose |
Trypan blue solution | Sigma-Aldrich | T8154 | |
Sabouraud dextrose agar | BD Biosciences | 211584 | |
Collagenase type IV | Sigma-Aldrich | C5138 | 0.25% |
Dispase | Invitrogen | 17105-041 | 1.7 U/ml |
Wire mesh screens | TWP | 060X060S0065W36T | No. 60 mesh, stainless |
Hanks’ balanced salt solution | Invitrogen | 24020-117 | |
CytoPrep fixative | Fisher Scientific | 12-570-10 | Preserves smear slides |
Papanicolaou stain EA-65 | EMD Millipore | 7054X-85 | |
Papanicolaou stain OG-6 | EMD Millipore | 7052X-85 | |
Harris’ Alum hematoxylin | EMD Millipore | 638A-85 | |
Isoflurane | Baxter Internationl Inc. | NDC 10019-773-60 | Used with isoflurane vaporizer or in a drop system closed anesthetic chamber |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved