A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The fabrication of a novel, flexible thin film surgical adhesive from FDA approved ingredients, chitosan and indocyanine green is described. Bonding of this adhesive to collagenous tissue through a simple activation process with a low-powered infra-red laser is demonstrated.
Sutures are a 4,000 year old technology that remain the 'gold-standard' for wound closure by virtue of their repair strength (~100 KPa). However, sutures can act as a nidus for infection and in many procedures are unable to effect wound repair or interfere with functional tissue regeneration.1 Surgical glues and adhesives, such as those based on fibrin and cyanoacrylates, have been developed as alternatives to sutures for the repair of such wounds. However, current commercial adhesives also have significant disadvantages, ranging from viral and prion transfer and a lack of repair strength as with the fibrin glues, to tissue toxicity and a lack of biocompatibility for the cyanoacrylate based adhesives. Furthermore, currently available surgical adhesives tend to be gel-based and can have extended curing times which limit their application.2 Similarly, the use of UV lasers to facilitate cross-linking mechanisms in protein-based or albumin 'solders' can lead to DNA damage while laser tissue welding (LTW) predisposes thermal damage to tissues.3 Despite their disadvantages, adhesives and LTW have captured approximately 30% of the wound closure market reported to be in excess of US $5 billion per annum, a significant testament to the need for sutureless technology.4
In the pursuit of sutureless technology we have utilized chitosan as a biomaterial for the development of a flexible, thin film, laser-activated surgical adhesive termed 'SurgiLux'. This novel bioadhesive uses a unique combination of biomaterials and photonics that are FDA approved and successfully used in a variety of biomedical applications and products. SurgiLux overcomes all the disadvantages associated with sutures and current surgical adhesives (see Table 1).
In this presentation we report the relatively simple protocol for the fabrication of SurgiLux and demonstrate its laser activation and tissue weld strength. SurgiLux films adhere to collagenous tissue without chemical modification such as cross-linking and through irradiation using a comparatively low-powered (120 mW) infrared laser instead of UV light. Chitosan films have a natural but weak adhesive attraction to collagen (~3 KPa), laser activation of the chitosan based SurgiLux films emphasizes the strength of this adhesion through polymer chain interactions as a consequence of transient thermal expansion.5 Without this 'activation' process, SurgiLux films are readily removed.6-9 SurgiLux has been tested both in vitro and in vivo on a variety of tissues including nerve, intestine, dura mater and cornea. In all cases it demonstrated good biocompatibility and negligible thermal damage as a consequence of irradiation.6-10
1. Preparation of SurgiLux Solution
2. Casting of SurgiLux Films
3. Laser Activation of SurgiLux Adhesive Films
4. Strength of the Repair
Centrifugation leads to a transparent green solution, which increases viscosity after storage at 4-6 °C. After standing for 3 weeks, the green solution is converted into a transparent green SurgiLux film approximately 20 microns thick and, as demonstrated in the video, is readily flexible.
Upon irradiation with the laser, the SurgiLux film bonds to the tissue. This can be observed at the edges of the film where the tissue appears to contract as the laser beam passes over the film (...
Chitosan can be obtained in a variety of molecular weights and with different degrees of deactylation (DDA). Variations in chitosan purity may lead to the presence of particulates in the SurgiLux solution; centrifugation is used to eliminate these and should result in a transparent green solution. However, filtration can also be used as an added or alternative fabrication step. As with any materials processing, variations, such as chitosan DDA and molecular weight, have implications for the physiochemical, biological and...
No conflicts of interest declared.
The authors acknowledge a grant from the National Health and Medical Research Council of Australia (NHMRC #1000674) to L.J.R. Foster.
Name | Company | Catalog Number | Comments |
Chitosan | Sigma-Aldrich | 448877 | |
Indocyanine Green | Sigma-Aldrich | I2633 | Also known as Cardiogreen |
Acetic acid | Sigma-Aldrich | 320099 | |
Infra-red diode laser with fiber delivery. (808 nm, 120 mW, Beam core 200 μm) | CNI Lasers | Fc-808 | Variable system up to 5 W power |
Laser safety glasses | CNI Lasers | LS-G | |
Tensile testing apparatus | Instron Pty Ltd | 5542 | 50 N load cell |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved