JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Protocol
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The mouse inner ear is a placode-derived sensory organ whose developmental program is elaborated during gestation. We define an in utero gene transfer technique consisting of three steps: mouse ventral laparotomy, transuterine microinjection, and in vivo electroporation. We use digital video microscopy to demonstrate the critical experimental embryological techniques.

Abstract

The mammalian inner ear has 6 distinct sensory epithelia: 3 cristae in the ampullae of the semicircular canals; maculae in the utricle and saccule; and the organ of Corti in the coiled cochlea. The cristae and maculae contain vestibular hair cells that transduce mechanical stimuli to subserve the special sense of balance, while auditory hair cells in the organ of Corti are the primary transducers for hearing 1. Cell fate specification in these sensory epithelia and morphogenesis of the semicircular canals and cochlea take place during the second week of gestation in the mouse and are largely completed before birth 2,3. Developmental studies of the mouse inner ear are routinely conducted by harvesting transgenic embryos at different embryonic or postnatal stages to gain insight into the molecular basis of cellular and/or morphological phenotypes 4,5. We hypothesize that gene transfer to the developing mouse inner ear in utero in the context of gain- and loss-of-function studies represents a complimentary approach to traditional mouse transgenesis for the interrogation of the genetic mechanisms underlying mammalian inner ear development6.

The experimental paradigm to conduct gene misexpression studies in the developing mouse inner ear demonstrated here resolves into three general steps: 1) ventral laparotomy; 2) transuterine microinjection; and 3) in vivo electroporation. Ventral laparotomy is a mouse survival surgical technique that permits externalization of the uterus to gain experimental access to the implanted embryos7. Transuterine microinjection is the use of beveled, glass capillary micropipettes to introduce expression plasmid into the lumen of the otic vesicle or otocyst. In vivo electroporation is the application of square wave, direct current pulses to drive expression plasmid into progenitor cells8-10.

We previously described this electroporation-based gene transfer technique and included detailed notes on each step of the protocol11. Mouse experimental embryological techniques can be difficult to learn from prose and still images alone. In the present work, we demonstrate the 3 steps in the gene transfer procedure. Most critically, we deploy digital video microscopy to show precisely how to: 1) identify embryo orientation in utero; 2) reorient embryos for targeting injections to the otocyst; 3) microinject DNA mixed with tracer dye solution into the otocyst at embryonic days 11.5 and 12.5; 4) electroporate the injected otocyst; and 5) label electroporated embryos for postnatal selection at birth. We provide representative examples of successfully transfected inner ears; a pictorial guide to the most common causes of otocyst mistargeting; discuss how to avoid common methodological errors; and present guidelines for writing an in utero gene transfer animal care protocol.

Protocol

1. Ventral Laparotomy

  1. Anesthetize a dam whose embryos are at embryonic day 11.5 (E11.5; noon on the day a vaginal plug is detected is day 0.5 of embryonic development) by intraperitoneal injection of sodium pentobarbital anesthetic solution (7.5 μL per gram body weight). Working anesthetic solution: 180 μL of 50 mg/mL pentobarbital sodium solution; 100 μL of absolute ethanol; 320 μL of 65 mg/mL aqueous magnesium sulfate (modulates uterine tone); and 400 μL of propylene glycol (vehicle miscible with aqueous and organic components).
  2. Assess completeness of anesthesia by conducting noxious stimuli tests: paw squeeze; tail pinch; and blink response to cheek and vibrissae touch. Apply sterile ophthalmic ointment to the corneas.
  3. Shave the abdominal fur from the suprapubic area to the rib cage with shears and a fine blade (Oster #40 blade). Disinfect the abdomen with 70% ethanol, 10% povidone iodine (Betadine), and 70% ethanol, sequentially. Place mouse abdomen-side down on a sterile drape and then set on a heating pad or warm plate (37 °C) for 2-5 mins.
  4. Incise the abdominal skin in the ventral midline with ball-tipped scissors. Extend the incision for 10-14 mm. Identify the linea alba, an avascular, white connective tissue band along the ventral midline of the abdominal wall. Incise the linea alba with ball tipped scissors and extend the incision 10-14 mm. Immediately irrigate the abdomen with prewarmed (37 °C) lactated Ringer's solution.
  5. Externalize the two horns of the uterus with ring forceps without applying excessive pressure on the implantation sites. Irrigate the externalized uterine horns with prewarmed, lactated Ringer's solution.

2. Transuterine Microinjection

  1. Fabricate a thick-walled, borosilicate glass capillary microinjection pipette with the following characteristics: 12-16 μm outer diameter and a 20 degree bevel. On a Sutter P-97 pipette puller with small box filament, use the following program: heat = ramp test plus 3 units; pressure = 200; pull = 0; velocity = 46; time = 100). With the Sutter BV-10 beveler, use the 104C (gold) abrasive disk for large diameter pipettes. Resuspend expression plasmid at 3-4 μg/μL in calcium free phosphate buffered saline (pH 7.2-7.4). Add crystalline fast green to the concentrated DNA, vortex gently for 30 seconds, and spin at 10,000 g for 10 seconds. The minimum amount of fast green required to visually track the efficacy of the injection is determined empirically. Backfill the beveled pipette with the DNA/fast green solution. Connect the loaded microinjection pipette to the pipette holder of the pressure injector (Picospritzer using >99% pure nitrogen as source gas).
  2. Transilluminate the uterus with low intensity, halogen light to visualize the embryo within its implantation site. Identify the beating heart, brain vesicles, limb buds, nascent 4th ventricle of the hindbrain, and eye. Irrigate the uterus every 2 minutes with prewarmed, lactated Ringer's solution to maintain hydration. Apply gentle pressure on the uterus to reorient the embryo and identify the anatomical landmarks noted above.
  3. Orient the embryo to identify the primary head vein whose anterior and posterior branches flank the mesenchymal territory in which the otocyst resides. The otocyst proper cannot be seen by transillumination of the uterus. The otocyst is located midway between the anterior and posterior branches of the primary head vein which, along with the main trunk of the vein, form the shape of the uprights or goalposts on an American football field. The otocyst is midway between the uprights.
  4. Insert the injection pipette through the uterus in a trajectory in line with the presumptive location of the otocyst. Pulse the microinjector once after passing through the uterus to visualize the tracer dye and the approximate the location of the pipette tip. Advance the pipette under micrometer control and pulse again to assess depth. Further advance the pipette into the lateral head mesenchyme and pulse repeatedly. Successful otocyst targeting will reveal the tapered shape of the endolymphatic duct dorsally and the scallop shell-shape of the vestibule. Release pressure on the uterus, remove the pipette from the embryo/uterus in one motion, and immediately irrigate the uterus with prewarmed, lactated Ringer's solution.

3. In vivo Electroporation

  1. Irrigate the uterus with lactated Ringer's solution. Freshly applied lactated Ringer's solution is necessary to electrically couple the paddle-style electrodes to the uterus. Moisten the tungsten surfaces of the electrodes with lactated Ringer's. Center the injected otocyst in the path of the electrodes. Gently compress the uterus with the electroporation paddles. The cathode is in contact with the uterine wall lateral to the injected otocyst and the anode is in contact with the uterine wall adjacent to the uninjected otocyst. Trigger a square wave pulse train with the foot pedal switch on the electroporator. Electroporation parameters are: 5, 50 msec pulses at 43 volts per pulse and a 950 msec interpulse delay. Immediately irrigate the uterus after the pulse train is delivered. Record the current delivered to the tissue: 60-100 mAmps is sufficient to transfect otic epithelial progenitors. Inject and electroporate 4-6, E11.5 embryos per dam.
  2. Perform a second, independent transuterine microinjection of aqueous fluorescent dextran (Alexa Fluor 488 if the expression plasmid encodes a red fluorescent protein or Alex Fluor 594 if the expression plasmid encodes a green fluorescent protein) into the 4th ventricle of those embryos whose inner ears are accurately injected and at least 60 mAmps of current per pulse was delivered during electroporation. The fluorescent dextran will be detectable at birth in the hindbrain and enable selection of pups whose inner ears were manipulated during embryogenesis (see 3.5).
  3. Irrigate the uterine horns with lactated Ringer's. Reinsert the uterine horns into the abdominal cavity. Flush the uterine cavity with 2-4 mL of prewarmed, lactated Ringer's solution and allow the overflow to drain out of the incision site onto the sterile drape. Replace the draping with dry, sterile material. Suture the abdominal wall with a non-cutting needle and a 6-0 resorbable suture. We prefer a running stitch, locking every other stitch, for both the abdominal wall and skin.
  4. Dry the dams' fur and administer a non-steroidal anti-inflammatory such as Meloxicam by subcutaneous injection. Return the dam to the prewarmed recovery cage on a sterile drape. Monitor and record the dams' respirations, incision site patency, and vagina for bloody discharge. Bleeding is rare but if present and unabated, euthanize the dam while she is still under anesthesia. Note the time she regains consciousness and attempts to ambulate. Return the dam to the mouse colony when she shows signs of eating and drinking and has begun to nest build. Typically, this occurs within 12 hrs.
  5. At birth (postnatal day 0), flash the hindbrain region of each pup in the litter to detect the fluorescent dextran using a stereofluorescence dissecting microscope with a GFP or Texas Red filter set as appropriate. Return to the lactating dam only those pups that display hindbrain labeling.

4. Representative Results

figure-protocol-7695
Figure 1. Electroporation-mediated gene transfer to the developing cochlea. The E11.5 otocyst was injected with an expression plasmid encoding enhanced green fluorescent protein (EGFP) and electroporated (pulse train parameters: five, 43 volt pulses at 50 msec/pulse and 950 msec interpulse delay). A) A representative inner ear from a postnatal day 6 (P6) pup whose otocyst was injected and electroporated at E11.5 demonstrating EGFP expression from the base through the middle turn of the cochlea. The lateral wall of the cochlea was removed from the middle turn and apex only. E11.5 progenitors that give rise to the apex were not transfected. B) Whole mount immunostaining of the cochlea in (A) with the hair cell marker, myosin 7a (Myo7a), indicates that EGFP expression follows the trajectory of the organ of Corti and is grossly localized to the hair cell-bearing sensory epithelium. C) A representative inner ear from an E18.5 embryo whose otocyst was injected and electroporated at E11.5. The laser confocal projection demonstrates EGFP expression in Myo7a-positive sensory hair cells. D) Laser confocal projection of the cochlear sensory epithelium from the E18.5 organ of Corti indicating EGFP expression in the inner hair cells (ihc), outer hair cells (ohc), inner phalangial cells (ipc), pillar cells (pc), and Deiters' cells (dc). The scale bar in (B) applies to (A).

Access restricted. Please log in or start a trial to view this content.

Discussion

Gene transfer to the developing mouse inner ear: The mouse inner ear develops from the otic placode during the first week of postimplantation development12,13. By embryonic day 9.5 (E9.5), the placode has invaginated and morphed into a fluid-filled vesicle called the otocyst2. Otic precursors in the vesicle give rise to the sensory and nonsensory cells within the mature inner ear as well as the neurons that innervate mechanically sensitive hair cells in the vestibular and auditory s...

Access restricted. Please log in or start a trial to view this content.

Disclosures

No conflicts of interest declared.

Acknowledgements

We thank Humana Press for permission to publish the microinjection pipette fabrication figure which originally appeared on page 130 of reference 11; Larry Dlugas and Steven Wong, OHSU Department of Educational Communications, for videography; Larry Dlugas for video design and editing; Adam M. O'Quinn, Senior Designer, Trion/Envirco for designing our custom horizontal laminar flow hood and Les Goldsmith for providing the technical schematic; Victor Monterroso, MV, MS, PhD and Tom Chatkupt, DVM, OHSU Department of Comparative Medicine, for guidance with our animal care protocol, surgical techniques, and prophylactic analgesia regimen; Marcel Perret-Gentil, DVM, MS, for sharing his handout on veterinary suturing techniques; Edward Porsov, MS, for designing our Adobe Premiere Pro video microscopy computer workstation; and Leah White and Jonas Hinckley of LNS Captioning (Portland, OR). This work was supported by grants from the National Institute on Deafness and other Communication Disorders: DC R01 008595 and DC R01 008595-04S2 (to JB) and P30 DC005983 (Oregon Hearing Research Center Core Grant, Peter Gillespie, Principal Investigator).

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Micro Sterilizing Case Roboz Surgical Instruments Co.RS-9900a8X8.5X1.25 inches
Ball-tipped scissorsFine Science Tools14109-09
Ring forceps Fine Science Tools11106-094.8mm ID/6mm OD
Adson Tissue ForcepsFine Science Tools11027-12
Needle driverFine Science Tools12502-12
Allergy Syringe TrayBD Biosciences305536
Suture 6-0SynetureGL-8890.7 metric gastrointestinal suture
Lactated Ringer’s Injection USPBaxter Internationl Inc.2B2323
Fast greenSigma-AldrichF7258
Borosilicate glass capillaryHarvard Apparatus30-0053
Nembutal Sodium SolutionOVATION PharmaceuticalsNDC 67386-501-52
MgSO4.7H2OFisher ScientificM63-500
Propylene glycolFisher ScientificP355-1
EthanolSigma-AldrichE7023-500
MeloxicamBoehringer IngeheimNADA 141-219
Micropipette PullerSutter Instrument Co.P-97FB255B box filament; consult Pipette Cookbook from Sutter instruments
Micr–lectrode BevelerSutter Instrument Co.BV-10104C beveling disk for large pipettes; consult owner’s manual for beveling theory
Micropipette holderWarner InstrumentsMP-S15TFor 1.5mm outer diameter pipette and female pressure port for Picospritzer tubing.
Tweezers-style electrodeProtech International, Inc.CUY650P55 mm outer diameter
Square Wave ElectroporatorProtech International, Inc.CUY21EDITFootpedal recommended
PICOSPRITZER IIIParker Hannifin Corporation051-0500-900Footpedal recommended
Manual Control MicromanipulatorHarvard Apparatus640056
Horizontal laminar flow clean benchEnvircoCustom modifications to LF 630-10554. See supplementary information for hood schematic.
Leica stereofluorescence dissecting microcope with Lumencor SOLA light engineBartels and Stout and LumencorMZ10F with Lumencor SOLA light engineFootpedals to focus the MZ10F and to trigger the SOLA light engine are recommended
Alexa Fluor 594 DextranInvitrogenD2291310mg/ml, aqueous
Alexa Fluor 488 DextranInvitrogenD2291010mg/ml, aqueous
Enviro-driShepherd Specialty Paperswww.ssponline.com

References

  1. Gillespie, P. G., Muller, U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell. 139, 33-44 (2009).
  2. Bok, J., Chang, W., Wu, D. K. Patterning and morphogenesis of the vertebrate inner ear. Int. J. Dev. Biol. 51, 521-533 (2007).
  3. Kelley, M. W. Regulation of cell fate in the sensory epithelia of the inner ear. Nat. Rev. Neurosci. 7, 837-849 (2006).
  4. Ohyama, T. BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J. Neurosci. 30, 15044-15051 (2010).
  5. Pan, W., Jin, Y., Stanger, B., Kiernan, A. E. Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc. Natl. Acad. Sci. U.S.A. 107, 15798-15803 (2010).
  6. Gubbels, S. P., Woessner, D. W., Mitchell, J. C., Ricci, A. J., Brigande, J. V. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature. 455, 537-541 (2008).
  7. Guide for the Care and Use of Laboratory Animals. , 8th edn, The National Academy Press. (2010).
  8. Matsuda, T., Cepko, C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl. Acad. Sci. U.S.A. 104, 1027-1032 (2007).
  9. Chen, C., Smye, S. W., Robinson, M. P., Evans, J. A. Membrane electroporation theories: a review. Med. Biol. Eng. Comput. 44, 5-14 (2006).
  10. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552-1558 (2006).
  11. Brigande, J. V., Gubbels, S. P., Woessner, D. W., Jungwirth, J. J., Bresee, C. S. Electroporation-mediated gene transfer to the developing mouse inner ear. Methods Mol. Biol. 493, 125-139 (2009).
  12. Morsli, H., Choo, D., Ryan, A., Johnson, R., Wu, D. K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci. 18, 3327-3335 (1998).
  13. Sher, A. E. The embryonic and postnatal development of the inner ear of the mouse. Acta. Otolaryngol. , Suppl 285. 1-77 (1971).
  14. Sheffield, A. M. Viral vector tropism for supporting cells in the developing murine cochlea. Hear Res. 277, 28-36 (2011).
  15. Bedrosian, J. C. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol. Ther. 14, 328-335 (2006).
  16. Reisinger, E. Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis. J. Neurosci. 31, 4886-4895 (2011).
  17. Magnani, E., Bartling, L., Hake, S. From Gateway to MultiSite Gateway in one recombination event. BMC Mol. Biol. 7, 46(2006).
  18. Perret-Gentil, M. Principles of Veterinary Suturing. , The University of Texas at San Antonio. Forthcoming.
  19. Oesterle, A. P-1000 & P-97 Pipette Cookbook. , Sutter. (2011).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Gene TransferDeveloping Mouse Inner EarIn Vivo ElectroporationSensory EpitheliaCristaeMaculaeOrgan Of CortiVestibular Hair CellsAuditory Hair CellsCell Fate SpecificationMorphogenesisGestationTransgenic EmbryosMolecular BasisGain of function StudiesLoss of function StudiesGene Misexpression StudiesVentral LaparotomyTransuterine Microinjection

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved