A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The mouse inner ear is a placode-derived sensory organ whose developmental program is elaborated during gestation. We define an in utero gene transfer technique consisting of three steps: mouse ventral laparotomy, transuterine microinjection, and in vivo electroporation. We use digital video microscopy to demonstrate the critical experimental embryological techniques.
The mammalian inner ear has 6 distinct sensory epithelia: 3 cristae in the ampullae of the semicircular canals; maculae in the utricle and saccule; and the organ of Corti in the coiled cochlea. The cristae and maculae contain vestibular hair cells that transduce mechanical stimuli to subserve the special sense of balance, while auditory hair cells in the organ of Corti are the primary transducers for hearing 1. Cell fate specification in these sensory epithelia and morphogenesis of the semicircular canals and cochlea take place during the second week of gestation in the mouse and are largely completed before birth 2,3. Developmental studies of the mouse inner ear are routinely conducted by harvesting transgenic embryos at different embryonic or postnatal stages to gain insight into the molecular basis of cellular and/or morphological phenotypes 4,5. We hypothesize that gene transfer to the developing mouse inner ear in utero in the context of gain- and loss-of-function studies represents a complimentary approach to traditional mouse transgenesis for the interrogation of the genetic mechanisms underlying mammalian inner ear development6.
The experimental paradigm to conduct gene misexpression studies in the developing mouse inner ear demonstrated here resolves into three general steps: 1) ventral laparotomy; 2) transuterine microinjection; and 3) in vivo electroporation. Ventral laparotomy is a mouse survival surgical technique that permits externalization of the uterus to gain experimental access to the implanted embryos7. Transuterine microinjection is the use of beveled, glass capillary micropipettes to introduce expression plasmid into the lumen of the otic vesicle or otocyst. In vivo electroporation is the application of square wave, direct current pulses to drive expression plasmid into progenitor cells8-10.
We previously described this electroporation-based gene transfer technique and included detailed notes on each step of the protocol11. Mouse experimental embryological techniques can be difficult to learn from prose and still images alone. In the present work, we demonstrate the 3 steps in the gene transfer procedure. Most critically, we deploy digital video microscopy to show precisely how to: 1) identify embryo orientation in utero; 2) reorient embryos for targeting injections to the otocyst; 3) microinject DNA mixed with tracer dye solution into the otocyst at embryonic days 11.5 and 12.5; 4) electroporate the injected otocyst; and 5) label electroporated embryos for postnatal selection at birth. We provide representative examples of successfully transfected inner ears; a pictorial guide to the most common causes of otocyst mistargeting; discuss how to avoid common methodological errors; and present guidelines for writing an in utero gene transfer animal care protocol.
1. Ventral Laparotomy
2. Transuterine Microinjection
3. In vivo Electroporation
4. Representative Results
Figure 1. Electroporation-mediated gene transfer to the developing cochlea. The E11.5 otocyst was injected with an expression plasmid encoding enhanced green fluorescent protein (EGFP) and electroporated (pulse train parameters: five, 43 volt pulses at 50 msec/pulse and 950 msec interpulse delay). A) A representative inner ear from a postnatal day 6 (P6) pup whose otocyst was injected and electroporated at E11.5 demonstrating EGFP expression from the base through the middle turn of the cochlea. The lateral wall of the cochlea was removed from the middle turn and apex only. E11.5 progenitors that give rise to the apex were not transfected. B) Whole mount immunostaining of the cochlea in (A) with the hair cell marker, myosin 7a (Myo7a), indicates that EGFP expression follows the trajectory of the organ of Corti and is grossly localized to the hair cell-bearing sensory epithelium. C) A representative inner ear from an E18.5 embryo whose otocyst was injected and electroporated at E11.5. The laser confocal projection demonstrates EGFP expression in Myo7a-positive sensory hair cells. D) Laser confocal projection of the cochlear sensory epithelium from the E18.5 organ of Corti indicating EGFP expression in the inner hair cells (ihc), outer hair cells (ohc), inner phalangial cells (ipc), pillar cells (pc), and Deiters' cells (dc). The scale bar in (B) applies to (A).
Access restricted. Please log in or start a trial to view this content.
Gene transfer to the developing mouse inner ear: The mouse inner ear develops from the otic placode during the first week of postimplantation development12,13. By embryonic day 9.5 (E9.5), the placode has invaginated and morphed into a fluid-filled vesicle called the otocyst2. Otic precursors in the vesicle give rise to the sensory and nonsensory cells within the mature inner ear as well as the neurons that innervate mechanically sensitive hair cells in the vestibular and auditory s...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
We thank Humana Press for permission to publish the microinjection pipette fabrication figure which originally appeared on page 130 of reference 11; Larry Dlugas and Steven Wong, OHSU Department of Educational Communications, for videography; Larry Dlugas for video design and editing; Adam M. O'Quinn, Senior Designer, Trion/Envirco for designing our custom horizontal laminar flow hood and Les Goldsmith for providing the technical schematic; Victor Monterroso, MV, MS, PhD and Tom Chatkupt, DVM, OHSU Department of Comparative Medicine, for guidance with our animal care protocol, surgical techniques, and prophylactic analgesia regimen; Marcel Perret-Gentil, DVM, MS, for sharing his handout on veterinary suturing techniques; Edward Porsov, MS, for designing our Adobe Premiere Pro video microscopy computer workstation; and Leah White and Jonas Hinckley of LNS Captioning (Portland, OR). This work was supported by grants from the National Institute on Deafness and other Communication Disorders: DC R01 008595 and DC R01 008595-04S2 (to JB) and P30 DC005983 (Oregon Hearing Research Center Core Grant, Peter Gillespie, Principal Investigator).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Micro Sterilizing Case | Roboz Surgical Instruments Co. | RS-9900a | 8X8.5X1.25 inches |
Ball-tipped scissors | Fine Science Tools | 14109-09 | |
Ring forceps | Fine Science Tools | 11106-09 | 4.8mm ID/6mm OD |
Adson Tissue Forceps | Fine Science Tools | 11027-12 | |
Needle driver | Fine Science Tools | 12502-12 | |
Allergy Syringe Tray | BD Biosciences | 305536 | |
Suture 6-0 | Syneture | GL-889 | 0.7 metric gastrointestinal suture |
Lactated Ringer’s Injection USP | Baxter Internationl Inc. | 2B2323 | |
Fast green | Sigma-Aldrich | F7258 | |
Borosilicate glass capillary | Harvard Apparatus | 30-0053 | |
Nembutal Sodium Solution | OVATION Pharmaceuticals | NDC 67386-501-52 | |
MgSO4.7H2O | Fisher Scientific | M63-500 | |
Propylene glycol | Fisher Scientific | P355-1 | |
Ethanol | Sigma-Aldrich | E7023-500 | |
Meloxicam | Boehringer Ingeheim | NADA 141-219 | |
Micropipette Puller | Sutter Instrument Co. | P-97 | FB255B box filament; consult Pipette Cookbook from Sutter instruments |
Micr–lectrode Beveler | Sutter Instrument Co. | BV-10 | 104C beveling disk for large pipettes; consult owner’s manual for beveling theory |
Micropipette holder | Warner Instruments | MP-S15T | For 1.5mm outer diameter pipette and female pressure port for Picospritzer tubing. |
Tweezers-style electrode | Protech International, Inc. | CUY650P5 | 5 mm outer diameter |
Square Wave Electroporator | Protech International, Inc. | CUY21EDIT | Footpedal recommended |
PICOSPRITZER III | Parker Hannifin Corporation | 051-0500-900 | Footpedal recommended |
Manual Control Micromanipulator | Harvard Apparatus | 640056 | |
Horizontal laminar flow clean bench | Envirco | Custom modifications to LF 630-10554. See supplementary information for hood schematic. | |
Leica stereofluorescence dissecting microcope with Lumencor SOLA light engine | Bartels and Stout and Lumencor | MZ10F with Lumencor SOLA light engine | Footpedals to focus the MZ10F and to trigger the SOLA light engine are recommended |
Alexa Fluor 594 Dextran | Invitrogen | D22913 | 10mg/ml, aqueous |
Alexa Fluor 488 Dextran | Invitrogen | D22910 | 10mg/ml, aqueous |
Enviro-dri | Shepherd Specialty Papers | www.ssponline.com |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved