A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a method to form an imaging window in the mouse skull that spans millimeters and is stable for months without inflammation of the brain. This method is well suited for longitudinal studies of blood flow, cellular dynamics, and cell/vascular structure using two-photon microscopy.
In vivo imaging of cortical function requires optical access to the brain without disruption of the intracranial environment. We present a method to form a polished and reinforced thinned skull (PoRTS) window in the mouse skull that spans several millimeters in diameter and is stable for months. The skull is thinned to 10 to 15 μm in thickness with a hand held drill to achieve optical clarity, and is then overlaid with cyanoacrylate glue and a cover glass to: 1) provide rigidity, 2) inhibit bone regrowth and 3) reduce light scattering from irregularities on the bone surface. Since the skull is not breached, any inflammation that could affect the process being studied is greatly reduced. Imaging depths of up to 250 μm below the cortical surface can be achieved using two-photon laser scanning microscopy. This window is well suited to study cerebral blood flow and cellular function in both anesthetized and awake preparations. It further offers the opportunity to manipulate cell activity using optogenetics or to disrupt blood flow in targeted vessels by irradiation of circulating photosensitizers.
1. Preparing for Surgery i
2. Mounting a Head Frame
3. The Generation of a Polished and Reinforced Thinned-skull (PoRTS) Window
4. Recovery
5. Imaging Preparation
6. Representative Results
A successful window will allow imaging depths up to 250 μm below the pial surface for several months. This method has been used to study in vivo capillary blood flow 4, 8, microglial activation 8, 9, and dendritic structure within the cortical parenchyma 8. In one example, we use two-photon imaging to show the cortical vasculature of an anesthetized Thy1-yellow fluorescent protein (YFP) mouse, after the blood serum is labeled by intravenous injection of Texas Red dextran (Fig. 2A). Dural vessels are often visible slightly above the cortical surface in the dura mater (Fig. 2C, arrow). Large pial arterioles and venules lie on the cortical surface (Fig 2D). Penetrating vessels branch from this surface network and dive into the cortex where they ramify into a dense capillary bed that feeds the cortical tissue (Fig. 2E to 2H). Dendritic arbors of deep YFP expressing cortical neurons, a signal endogenous to this mouse line, can be imaged concurrently in a second channel 10 (Fig. 2B to 2H). The second harmonic signal of the bone was collected in a third channel, and can be used to gauge the thickness of the thinned skull after collection of image stacks (Fig. 2A to 2C).
Cortical vascular dynamics are profoundly affected by anesthetics 11. In a second example, we show a video of spontaneous vasoactivity collected by two-photon microscopy from a habituated awake mouse. Prominent vasomotor oscillations in the lumen diameter are seen with a pial arteriole, but not with a neighboring venule. This basal range of vasoactivity is diminished with urethane anesthesia 4. To quantify spontaneous and evoked changes in blood flow, we use adapted line scanning techniques to capture both the vascular diameter and red blood cell velocity of individual vessels. Detailed resources on quantitative blood flow imaging using two-photon microscopy are available 3, 12.
Figure 1. Procedure for a PoRTS window. (A to K) Images of sequential steps in the procedure for generating a PoRTS window. See text for detailed instructions. β = bregma and λ = lambda. (L) Bolt and nut system for securing the head during imaging of anesthetized preparations. (M) Custom machined cross bar head mount for awake preparations. In this example, a connector was also implanted for repeated electrocorticogram recordings. (N) Schematic diagram showing dorsal view of the head mount and position of various components. The nut used in panel L is meant as alternative to the cross bar using in panel M. Two #000 self-tapping screws are added with the cross bar mount for added stability with awake imaging preparations. (O) Schematic diagram showing cross section of a PoRTS window.
Figure 2. Two-photon imaging of vasculature and neuronal structure in mouse cortex. All images were collected through a PoRTS window in a Thy1-YFP mouse at 2 days after window implantation 10. Maximal projection over 150 μm of tissue in the coronal orientation showing the thinned skull in relation to the vasculature (A) and dendrites (B). The bone (blue) was detected by collecting the second harmonic fluorescence at 450 nm emission with 900 nm excitation 8. The vasculature (red) was labeled by intravenously injected 70 kDa Texas Red dextran 6. The dendritic fields of neurons (green) are endogenous to the Thy1-YFP transgenic mouse line. (C-H) Maximal projections over 50 μm of tissue in the horizontal orientation at different depths below the pia. Data is from the same image stack shown in Panels A and B. Dural vessels may be visible just above the cortical surface (arrow in C).
Abbreviations
ACSF = artificial cerebral spinal fluid
PoRTS = polished and reinforced thinned skull window
YFP = yellow fluorescent protein
iEnsure that the procedures described are approved by your local Institutional Animal Care and Use Committee.
Access restricted. Please log in or start a trial to view this content.
Two-photon imaging through a PoRTS window requires transmission through the thinned bone and the dura, which attenuates the laser light and adds optical aberrations at greater depths 8. However, despite this drawback, imaging depths up to 250 μm below the pial surface can be achieved with 900 nm excitation. Greater imaging depths may in principle be possible with longer excitation wavelengths 13. A major advantage of this method is the absence of cortical inflammation that might exist transiently...
Access restricted. Please log in or start a trial to view this content.
Nothing to disclose.
This work was supported by the American Heart Association (Post-doctoral fellowship to AYS) and the National Institutes of Health (MH085499, EB003832, and OD006831 to DK). We thank Beth Friedman and Pablo Blinder for comments on the manuscript.
Access restricted. Please log in or start a trial to view this content.
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved