A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The amperometric technique measures dopamine release from a single cell by detecting the oxidative current produced by spontaneous dopamine oxidization. Simultaneous voltage clamp and amperometry methodology reveal the mechanistic relationship between the overall "activity" of dopamine transporter and the regulatory role of this activity on the reverse transport of dopamine.
After its release into the synaptic cleft, dopamine exerts its biological properties via its pre- and post-synaptic targets1. The dopamine signal is terminated by diffusion2-3, extracellular enzymes4, and membrane transporters5. The dopamine transporter, located in the peri-synaptic cleft of dopamine neurons clears the released amines through an inward dopamine flux (uptake). The dopamine transporter can also work in reverse direction to release amines from inside to outside in a process called outward transport or efflux of dopamine5. More than 20 years ago Sulzer et al. reported the dopamine transporter can operate in two modes of activity: forward (uptake) and reverse (efflux)5. The neurotransmitter released via efflux through the transporter can move a large amount of dopamine to the extracellular space, and has been shown to play a major regulatory role in extracellular dopamine homeostasis6. Here we describe how simultaneous patch clamp and amperometry recording can be used to measure released dopamine via the efflux mechanism with millisecond time resolution when the membrane potential is controlled. For this, whole-cell current and oxidative (amperometric) signals are measured simultaneously using an Axopatch 200B amplifier (Molecular Devices, with a low-pass Bessel filter set at 1,000 Hz for whole-cell current recording). For amperometry recording a carbon fiber electrode is connected to a second amplifier (Axopatch 200B) and is placed adjacent to the plasma membrane and held at +700 mV. The whole-cell and oxidative (amperometric) currents can be recorded and the current-voltage relationship can be generated using a voltage step protocol. Unlike the usual amperometric calibration, which requires conversion to concentration, the current is reported directly without considering the effective volume7. Thus, the resulting data represent a lower limit to dopamine efflux because some transmitter is lost to the bulk solution.
1. Equipment and Supplies
2. Prepare Electrodes for Recording
3. Prepare the Primary Neuronal Culture of Dopamine Neurons or Cells Engineered to Express Dopamine Transporter in Glass Bottom Petri Dishes
4. Visualize Cell and Perform Experiment
Combined patch clamp with amperometry can measure voltage-dependent DAT-mediated DA efflux. Figure 2A shows a representative experimental configuration and recording of DAT-mediated DA efflux when the intracellular milieu and the membrane potential are clamped by a whole-cell patch pipette. Using this technique, cells expressing YFP-DAT proteins are voltage-clamped with a whole cell patch pipette while an amperometric electrode is placed onto the plasma membrane (Figure 2A). The whole ce...
Simultaneous voltage-clamp and amperometry has the following benefits. All cell types are accessible and can be used for recording. The identification of the cells or neuron where the recordings are done is simple and straightforward. In particular, if the cell is fluorescently labeled by adding a fluorescent tag to the protein of interest the experimenter can easily select the target cell or neuron. The experimental configuration allows uniform and controlled delivery of pharmacological agents either via the patch pipet...
No conflicts of interest declared.
We thank Dr. Sanika Chirwa for critical review of this manuscript. This work was supported by National Institutes of Health (DA026947, DA021471, and NS071122).
Name | Company | Catalog Number | Comments |
Equipment | |||
Anti-vibration table w/faraday cage | Technical Manufacturing Corporation | 63-500 series | we use model 63-543 |
Inverted microscope Nikon TE-2000 | Nikon | discontinued | now Eclipse Ti |
Two low noise amplifiers axopatch 200b | Molecular Devices | 800-635-5577 | |
1-CV 203 BU headstage | Molecular Devices | 800-635-5578 | |
1-HL-U pipette holder | Molecular Devices | 800-635-5579 | |
Digidata 1440A A/D converter | Molecular Devices | 800-635-5580 | |
Two manipulators Siskyou, left and right handed | Siskiyou | MX6600R MX6600L | 877-313-6418 |
Laser pipette puller | Sutter Instruments | P-2000 | 888-883-0128 |
Low noise carbon fiber amperometric electrode | ProCFE | www.dagan.com | |
Low noise quartz pipette | Sutter Instruments | QF100-70-7.5 | 888-883-0128 |
12-volt car battery | widely available | ||
Car battery charger | widely available | ||
Reagent | |||
Sodium chloride (NaCl) | Sigma | S7653 | |
HEPES | Sigma | H3375 | |
Dextrose | Sigma | G7528 | |
Magnesium sulfate (MgSO4) | Sigma | M2643 | |
Potassium phosphate monobasic (KH2PO4) | Sigma | P5655 | |
Potassium chloride (KCl) | Sigma | P9333 | |
Calcium chloride dihydrate (CaCl2∙2H20) | Sigma | 223506 | |
Magnesium chloride hexahydrate (MgCl2∙6H20) | Sigma | M2670 | |
EGTA | Sigma | E0396 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved