A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Use of Cerenkov Luminescence Imaging (CLI) for monitoring preclinical cancer treatment is described here. This method takes advantage of Cerenkov Radiation (CR) and optical imaging (OI) to visualize radiolabeled probes and thus provides an alternative to PET in preclinical therapeutic monitoring and drug screening.
In molecular imaging, positron emission tomography (PET) and optical imaging (OI) are two of the most important and thus most widely used modalities1-3. PET is characterized by its excellent sensitivity and quantification ability while OI is notable for non-radiation, relative low cost, short scanning time, high throughput, and wide availability to basic researchers. However, both modalities have their shortcomings as well. PET suffers from poor spatial resolution and high cost, while OI is mostly limited to preclinical applications because of its limited tissue penetration along with prominent scattering optical signals through the thickness of living tissues.
Recently a bridge between PET and OI has emerged with the discovery of Cerenkov Luminescence Imaging (CLI)4-6. CLI is a new imaging modality that harnesses Cerenkov Radiation (CR) to image radionuclides with OI instruments. Russian Nobel laureate Alekseyevich Cerenkov and his colleagues originally discovered CR in 1934. It is a form of electromagnetic radiation emitted when a charged particle travels at a superluminal speed in a dielectric medium7,8. The charged particle, whether positron or electron, perturbs the electromagnetic field of the medium by displacing the electrons in its atoms. After passing of the disruption photons are emitted as the displaced electrons return to the ground state. For instance, one 18F decay was estimated to produce an average of 3 photons in water5.
Since its emergence, CLI has been investigated for its use in a variety of preclinical applications including in vivo tumor imaging, reporter gene imaging, radiotracer development, multimodality imaging, among others4,5,9,10,11. The most important reason why CLI has enjoyed much success so far is that this new technology takes advantage of the low cost and wide availability of OI to image radionuclides, which used to be imaged only by more expensive and less available nuclear imaging modalities such as PET.
Here, we present the method of using CLI to monitor cancer drug therapy. Our group has recently investigated this new application and validated its feasibility by a proof-of-concept study12. We demonstrated that CLI and PET exhibited excellent correlations across different tumor xenografts and imaging probes. This is consistent with the overarching principle of CR that CLI essentially visualizes the same radionuclides as PET. We selected Bevacizumab (Avastin; Genentech/Roche) as our therapeutic agent because it is a well-known angiogenesis inhibitor13,14. Maturation of this technology in the near future can be envisioned to have a significant impact on preclinical drug development, screening, as well as therapy monitoring of patients receiving treatments.
1. Tumor Model
2. PET
3. CLI
4. Representative Results
Visual comparison between CLI and PET images can be easily carried out. After unifying the scale bar across images from the same modality and place CLI and PET images side by side one can see in this representative panel (Figure 2A) that both CLI and PET revealed significantly decreased signals from H460 xenografts in treated mice from pre-treatment to day 3, suggesting significant therapeutic effect. As a comparison, moderately increased to unchanged signals were observed in untreated mice during the same time period (data not shown). By visual inspection alone one can observe that there is a good consistence between tumor contrasts that are visualized from CLI and PET. In fact, this visual correlation has sufficient resolution to show central necrosis of the tumor secondary to the anticancer treatment regimen (please compare the CLI and PET images from Day 3). To validate the imaging findings quantifications and correlation analysis can be carried out.
Quantifications of CLI and PET images and a simple fitting via linear regression showed that the two modalities indeed had an excellent correlation (Figure 2B, R2=0.9309 for 18F-FLT probed treatment group). Notably, in all of our CLI and PET imaging studies with different tumor models and different anticancer drugs the slopes of the fits are also remarkably close, thus suggesting an excellent fit of linear regression even of all data are conglomerated (data not shown). Both representative images are adapted from our previous publication12.
Figure 1. Schematic of experimental design of PET and CLI studies. Tumors were implanted bilaterally in shoulder region and allowed to grow to 150-200 mm3, and tumor-bearing mice were subjected to in vivo imaging via PET and CLI at day -1, 1, and 3. Bevacizumab treatment was performed by 2 injections of 20 mg/kg at days 0 and 2.
Figure 2. (A) In vivo CLI and PET images of mice bearing H460 xenografts treated with Bevacizumab before treatment (pre-scan) and after treatment (day 3). (B) Corresponding quantitative analysis of CLI and PET results (n=3) and their correlations. Images adapted from (6). Click here to view larger figure.
Access restricted. Please log in or start a trial to view this content.
CLI is emerging as a promising molecular imaging technique that has found potentials in many basic science research applications and even clinical use4,5,15,16,17. The major advantages of CLI over traditional nuclear imaging modalities such as PET stem from its use of OI instruments, which are easier to use, characterized by short acquisition time and high throughput, significantly less expensive, and more widely available to researchers. Additionally, what sets CLI apart from OI in general is its use of...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
We acknowledge support from the National Cancer Institute (NCI) R01 CA128908 and Stanford Medical Scholar Research Fellowship. No other potential conflict of interest relevant to this article was reported.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
H460 Cell Line | American Type Culture Collection | ATCC Number: HTB-177 | |
RPMI 1640 Medium | Invitrogen Life Technologies | 12633-012 | |
Fetal Bovine Serum | Invitrogen Life Technologies | 10091-148 | |
Penicillin/Streptomycin | Invitrogen Life Technologies | 15640-055 | |
Phosphate-Buffered Saline | Invitrogen Life Technologies | 10010-023 | |
Female Athymic Nude Mice | Charles River Laboratories, Inc. | Strain Code: 088 | |
Bevacizumab (Avastin) | Genentech/Roche | N/A | |
MicroPET Rodent R4 | Siemens Medical Solutions USA, Inc. | N/A | |
Isoflurane (Aerrane) | Baxter | Baxter Number: AHN3637 | |
IVIS Spectrum | Caliper Life Sciences | N/A |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved