JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Analysis of Gene Function and Visualization of Cilia-Generated Fluid Flow in Kupffer's Vesicle

Published: March 31st, 2013

DOI:

10.3791/50038

1Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, 2Department of Neurobiology and Anatomy, Eccles Institute of Human Genetics, University of Utah

Cilia-generated fluid flow in Kupffer’s Vesicle (KV) controls left-right patterning of the zebrafish embryo. Here, we describe a technique to modulate gene function specifically in KV cells. In addition, we show how to deliver fluorescent beads into KV to visualize fluid flow.

Internal organs such as the heart, brain, and gut develop left-right (LR) asymmetries that are critical for their normal functions1. Motile cilia are involved in establishing LR asymmetry in vertebrate embryos, including mouse, frog, and zebrafish2-6. These 'LR cilia' generate asymmetric fluid flow that is necessary to trigger a conserved asymmetric Nodal (TGF-β superfamily) signaling cascade in the left lateral plate mesoderm, which is thought to provide LR patterning information for developing organs7. Thus, to understand mechanisms underlying LR patterning, it is essential to identify genes that regulate the organization of LR ciliated cells, the motility and length of LR cilia and their ability to generate robust asymmetric flow.

In the zebrafish embryo, LR cilia are located in Kupffer's vesicle (KV)2,4,5. KV is comprised of a single layer of monociliated epithelial cells that enclose a fluid-filled lumen. Fate mapping has shown that KV is derived from a group of ~20-30 cells known as dorsal forerunner cells (DFCs) that migrate at the dorsal blastoderm margin during epiboly stages8,9. During early somite stages, DFCs cluster and differentiate into ciliated epithelial cells to form KV in the tailbud of the embryo10,11. The ability to identify and track DFCs—in combination with optical transparency and rapid development of the zebrafish embryo—make zebrafish KV an excellent model system to study LR ciliated cells.

Interestingly, progenitors of the DFC/KV cell lineage retain cytoplasmic bridges between the yolk cell up to 4 hr post-fertilization (hpf), whereas cytoplasmic bridges between the yolk cell and other embryonic cells close after 2 hpf8. Taking advantage of these cytoplasmic bridges, we developed a stage-specific injection strategy to deliver morpholino oligonucleotides (MO) exclusively to DFCs and knockdown the function of a targeted gene in these cells12. This technique creates chimeric embryos in which gene function is knocked down in the DFC/KV lineage developing in the context of a wild-type embryo. To analyze asymmetric fluid flow in KV, we inject fluorescent microbeads into the KV lumen and record bead movement using videomicroscopy2. Fluid flow is easily visualized and can be quantified by tracking bead displacement over time.

Here, using the stage-specific DFC-targeted gene knockdown technique and injection of fluorescent microbeads into KV to visualize flow, we present a protocol that provides an effective approach to characterize the role of a particular gene during KV development and function.

Overview of Stage-Specific Zebrafish Embryo Injections

Antisense morpholino oligonucleotides (MO), which bind to a targeted mRNA and disrupt protein expression from that transcript, are widely used in gene knockdown (loss-of-function) studies in zebrafish13,14. Gene Tools, LLC offers MOs that are tagged with either carboxyfluorescein (emits green fluorescence) or lissamine (emits red fluorescence) to detect MO in injected embryos using fluorescent microscopy. By injecting MO into the y.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Stage-specific MO injections provide a useful approach to analyze gene function in specific compartments of the embryo. Figure 1 presents a flow chart of the injection strategies used to test gene function in DFC/KV cells and how to introduce fluorescent beads to visualize fluid flow in KV. The distribution of fluorescent MO in successful stage-specific injected embryos is shown schematically in Figures 1D-F and in live embryos in Figure 2. An unsuccessful MO injection, .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Using stage-specific injections to target MO to the DFC/KV cell lineage is a useful approach to study cell-autonomy of gene function and avoid pleiotropic phenotypes caused by global gene knockdown. However, these injections can be technically challenging. Injection of MO between the 256-cell and 1,000-cell stages can result in three possible outcomes: 1) the MO remains aggregated at the injection site, 2) the MO diffuses throughout the yolk and enters DFC/KV cells or 3) the MO diffuses throughout the yolk and enters DFC.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Fiona Foley for excellent lab support and zebrafish care. This work was supported an AHA predoctoral fellowship to G.W. (11PRE5730027) and NHLBI grants to H.J.Y. (R01HL66292) and J.D.A. (R01HL095690).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of Reagent/Material Company Catalogue Number
Standard Control oligo-Lissamine tagged Gene Tools, LLC
Custom Rock2b morpholino oligo Gene Tools, LLC
Fluoresbrite Multifluorescent 0.5 micron Microspheres Polysciences, Inc. 24054

  1. Sutherland, M. J., Ware, S. M. Disorders of left-right asymmetry: heterotaxy and situsinversus. Am. J. Med. Genet. C Semin. Med. Genet. 151C (4), 307-317 (2009).
  2. Essner, J. J., Amack, J. D., Nyholm, M. K., Harris, E. B., Yost, H. J. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development. 132 (6), 1247-1260 (2005).
  3. Nonaka, S., et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 95 (6), 829-837 (1998).
  4. Essner, J. J., et al. Conserved function for embryonic nodal cilia. Nature. 418 (6893), 37-38 (2002).
  5. Kramer-Zucker, A. G., et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development. 132 (8), 1907-1921 (2005).
  6. Schweickert, A., et al. Cilia-driven leftward flow determines laterality in Xenopus. Curr. Biol. 17 (1), 60-66 (2007).
  7. Tabin, C. J. The key to left-right asymmetry. Cell. 127 (1), 27-32 (2006).
  8. Cooper, M. S., D'Amico, L. A. A cluster of noninvolutingendocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev. Biol. 180 (1), 184-198 (1996).
  9. Melby, A. E., Warga, R. M., Kimmel, C. B. Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development. 122 (7), 2225-2237 (1996).
  10. Amack, J. D., Wang, X., Yost, H. J. Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. Dev. Biol. 310 (2), 196-210 (2007).
  11. Oteiza, P., Koppen, M., Concha, M. L., Heisenberg, C. P. Origin and shaping of the laterality organ in zebrafish. Development. 135 (16), 2807-2813 (2008).
  12. Amack, J. D., Yost, H. J. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr. Biol. 14 (8), 685-690 (2004).
  13. Nasevicius, A., Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26 (2), 216-220 (2000).
  14. Bill, B. R., Petzold, A. M., Clark, K. J., Schimmenti, L. A., Ekker, S. C. A primer for morpholino use in zebrafish. Zebrafish. 6 (1), 69-77 (2009).
  15. Kimmel, C. B., Law, R. D. Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev. Biol. 108 (1), 78-85 (1985).
  16. Arrington, C. B., Yost, H. J. Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development. 136 (18), 3143-3152 (2009).
  17. Caron, A., Xu, X., Lin, X. Wnt/beta-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer's vesicle. Development. 139 (3), 514-524 (2012).
  18. Wang, G., et al. The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's vesicle in zebrafish. Development. 138 (1), 45-54 (2011).
  19. Aamar, E., Dawid, I. B. Sox17 and chordin are required for formation of Kupffer's vesicle and left-right asymmetry determination in zebrafish. Dev. Dyn. 239 (11), 2980-2988 (2010).
  20. Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W., Yost, H. J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 458 (7238), 651-654 (2009).
  21. Schneider, I., et al. Zebrafish Nkd1 promotes Dvl degradation and is required for left-right patterning. Dev. Biol. 348 (1), 22-33 (2010).
  22. Matsui, T., et al. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer's vesicle organogenesis. Proc. Natl. Acad. Sci. U.S.A. 108 (24), 9881-9886 (2011).
  23. Shu, X., et al. Na,K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. Development. 134 (10), 1921-1930 (2007).
  24. Esguerra, C. V. Ttrap is an essential modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis determination. Development. 134 (24), 4381-4393 (2007).
  25. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of Zebrafish Embryos to Analyze Gene Function. J. Vis. Exp. (25), e1115 (2009).
  26. Yuan, S., Sun, Z. Microinjection of mRNA and Morpholino Antisense Oligonucleotides in Zebrafish Embryos. J. Vis. Exp. (27), e1113 (2009).
  27. Molina, G., et al. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5 (9), 680-687 (2009).
  28. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203 (3), 253-310 (1995).
  29. Schneider, I., Houston, D. W., Rebagliati, M. R., Slusarski, D. C. Calcium fluxes in dorsal forerunner cells antagonize beta-catenin and alter left-right patterning. Development. 135 (1), 75-84 (2008).
  30. Clement, A., Solnica-Krezel, L., Gould, K. L. The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. Development. 138 (2), 291-302 (2011).
  31. Matsui, T., Bessho, Y. Left-right asymmetry in zebrafish. Cell Mol. Life Sci. , (2012).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved