A subscription to JoVE is required to view this content. Sign in or start your free trial.
A method is discussed by which the in vivo mechanical behavior of stimuli-responsive materials is monitored as a function of time. Samples are tested ex vivo using a microtensile tester with environmental controls to simulate the physiological environment. This work further promotes understanding the in vivo behavior of our material.
Implantable microdevices are gaining significant attention for several biomedical applications1-4. Such devices have been made from a range of materials, each offering its own advantages and shortcomings5,6. Most prominently, due to the microscale device dimensions, a high modulus is required to facilitate implantation into living tissue. Conversely, the stiffness of the device should match the surrounding tissue to minimize induced local strain7-9. Therefore, we recently developed a new class of bio-inspired materials to meet these requirements by responding to environmental stimuli with a change in mechanical properties10-14. Specifically, our poly(vinyl acetate)-based nanocomposite (PVAc-NC) displays a reduction in stiffness when exposed to water and elevated temperatures (e.g. body temperature). Unfortunately, few methods exist to quantify the stiffness of materials in vivo15, and mechanical testing outside of the physiological environment often requires large samples inappropriate for implantation. Further, stimuli-responsive materials may quickly recover their initial stiffness after explantation. Therefore, we have developed a method by which the mechanical properties of implanted microsamples can be measured ex vivo, with simulated physiological conditions maintained using moisture and temperature control13,16,17.
To this end, a custom microtensile tester was designed to accommodate microscale samples13,17 with widely-varying Young's moduli (range of 10 MPa to 5 GPa). As our interests are in the application of PVAc-NC as a biologically-adaptable neural probe substrate, a tool capable of mechanical characterization of samples at the microscale was necessary. This tool was adapted to provide humidity and temperature control, which minimized sample drying and cooling17. As a result, the mechanical characteristics of the explanted sample closely reflect those of the sample just prior to explantation.
The overall goal of this method is to quantitatively assess the in vivo mechanical properties, specifically the Young's modulus, of stimuli-responsive, mechanically-adaptive polymer-based materials. This is accomplished by first establishing the environmental conditions that will minimize a change in sample mechanical properties after explantation without contributing to a reduction in stiffness independent of that resulting from implantation. Samples are then prepared for implantation, handling, and testing (Figure 1A). Each sample is implanted into the cerebral cortex of rats, which is represented here as an explanted rat brain, for a specified duration (Figure 1B). At this point, the sample is explanted and immediately loaded into the microtensile tester, and then subjected to tensile testing (Figure 1C). Subsequent data analysis provides insight into the mechanical behavior of these innovative materials in the environment of the cerebral cortex.
1. Sample Preparation
The mechanical properties of nearly all polymeric materials, including our PVAc-NC, are dependent upon exposure to environmental conditions. Most notably, these include the exposure to heat and moisture. When a material is plasticized due to the uptake of moisture, or undergoes a thermal transition, it displays a reduction in Young's modulus. In preparing the moisture- and temperature-controlled environment for ex vivo sample mechanical characterization, it is important to ensure that there is minimal change in.......
The advancement of implantable biomedical microelectromechanical systems (bioMEMS) for interacting with biological systems is motivating the development of new materials with highly-tailored properties. Some of these materials are designed to exhibit a change in material properties in response to a stimulus found in the physiological environment. One recently-developed class of materials responds to the presence of hydrogen bond-forming liquids (e.g. water) and elevated temperatures to reduce the Young's modulus.......
We have nothing to disclose.
This work was supported by the Department of Biomedical Engineering at Case Western Reserve University through both lab start-up funds (J. Capadona), and the Medtronic Graduate Fellowship (K. Potter). Additional funding on this research was supported in part by NSF grant ECS-0621984 (C. Zorman), the Case Alumni Association (C. Zorman), the Department of Veterans Affairs through a Merit Review Award (B7122R), as well as the Advanced Platform Technology Center (C3819C).
....Name | Company | Catalog Number | Comments |
Name of Reagent/Material | Company | Catalogue Number | Comments |
Silicon wafer | University Wafer | Mechanical grade | |
Extruded acrylic sheet | Professional Plastics | SACR 062EF | Thickness 0.062" |
Razor blade | McMaster-Carr | 3962A3 | |
Tweezers | McMaster-Carr | 8384A47 | #5 tip |
Super Glue Gel | Loctite | 130380 | |
Air Brush | Snap-on Industrial | BF175TA | |
Air Compressor | Paasche | B002YKN8YO | D500 |
Thermocouple | Omega | HH12A | |
Hot plate | Cimarec | SP131325Q | |
CO2 direct-write laser | VersaLaser | 3.5 | |
Dessicator | Fisher Scientific | 08-595 | |
Lamp | custom-built | ||
Microtensile tester | custom-built |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved