Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A method is discussed by which the in vivo mechanical behavior of stimuli-responsive materials is monitored as a function of time. Samples are tested ex vivo using a microtensile tester with environmental controls to simulate the physiological environment. This work further promotes understanding the in vivo behavior of our material.

Abstract

Implantable microdevices are gaining significant attention for several biomedical applications1-4. Such devices have been made from a range of materials, each offering its own advantages and shortcomings5,6. Most prominently, due to the microscale device dimensions, a high modulus is required to facilitate implantation into living tissue. Conversely, the stiffness of the device should match the surrounding tissue to minimize induced local strain7-9. Therefore, we recently developed a new class of bio-inspired materials to meet these requirements by responding to environmental stimuli with a change in mechanical properties10-14. Specifically, our poly(vinyl acetate)-based nanocomposite (PVAc-NC) displays a reduction in stiffness when exposed to water and elevated temperatures (e.g. body temperature). Unfortunately, few methods exist to quantify the stiffness of materials in vivo15, and mechanical testing outside of the physiological environment often requires large samples inappropriate for implantation. Further, stimuli-responsive materials may quickly recover their initial stiffness after explantation. Therefore, we have developed a method by which the mechanical properties of implanted microsamples can be measured ex vivo, with simulated physiological conditions maintained using moisture and temperature control13,16,17.

To this end, a custom microtensile tester was designed to accommodate microscale samples13,17 with widely-varying Young's moduli (range of 10 MPa to 5 GPa). As our interests are in the application of PVAc-NC as a biologically-adaptable neural probe substrate, a tool capable of mechanical characterization of samples at the microscale was necessary. This tool was adapted to provide humidity and temperature control, which minimized sample drying and cooling17. As a result, the mechanical characteristics of the explanted sample closely reflect those of the sample just prior to explantation.

The overall goal of this method is to quantitatively assess the in vivo mechanical properties, specifically the Young's modulus, of stimuli-responsive, mechanically-adaptive polymer-based materials. This is accomplished by first establishing the environmental conditions that will minimize a change in sample mechanical properties after explantation without contributing to a reduction in stiffness independent of that resulting from implantation. Samples are then prepared for implantation, handling, and testing (Figure 1A). Each sample is implanted into the cerebral cortex of rats, which is represented here as an explanted rat brain, for a specified duration (Figure 1B). At this point, the sample is explanted and immediately loaded into the microtensile tester, and then subjected to tensile testing (Figure 1C). Subsequent data analysis provides insight into the mechanical behavior of these innovative materials in the environment of the cerebral cortex.

Protocol

1. Sample Preparation

  1. Prepare PVAc-NC film of thickness in the range of 25-100 μm using a solution casting and compression technique10-12.
  2. Adhere film to a silicon wafer by heating on a hot plate for two min at 70 °C (above the glass transition temperature) to promote intimate contact between the film and the wafer. This step ensures that the prepared film remains flat and fixed to the Si wafer, which is necessary for planar micromachining processes.
  3. Pattern th.......

Representative Results

The mechanical properties of nearly all polymeric materials, including our PVAc-NC, are dependent upon exposure to environmental conditions. Most notably, these include the exposure to heat and moisture. When a material is plasticized due to the uptake of moisture, or undergoes a thermal transition, it displays a reduction in Young's modulus. In preparing the moisture- and temperature-controlled environment for ex vivo sample mechanical characterization, it is important to ensure that there is minimal change in.......

Discussion

The advancement of implantable biomedical microelectromechanical systems (bioMEMS) for interacting with biological systems is motivating the development of new materials with highly-tailored properties. Some of these materials are designed to exhibit a change in material properties in response to a stimulus found in the physiological environment. One recently-developed class of materials responds to the presence of hydrogen bond-forming liquids (e.g. water) and elevated temperatures to reduce the Young's modulus.......

Acknowledgements

This work was supported by the Department of Biomedical Engineering at Case Western Reserve University through both lab start-up funds (J. Capadona), and the Medtronic Graduate Fellowship (K. Potter). Additional funding on this research was supported in part by NSF grant ECS-0621984 (C. Zorman), the Case Alumni Association (C. Zorman), the Department of Veterans Affairs through a Merit Review Award (B7122R), as well as the Advanced Platform Technology Center (C3819C).

....

Materials

NameCompanyCatalog NumberComments
Name of Reagent/MaterialCompanyCatalogue NumberComments
Silicon waferUniversity Wafer Mechanical grade
Extruded acrylic sheetProfessional PlasticsSACR 062EFThickness 0.062"
Razor bladeMcMaster-Carr3962A3 
TweezersMcMaster-Carr8384A47#5 tip
Super Glue GelLoctite130380 
Air BrushSnap-on IndustrialBF175TA 
Air CompressorPaascheB002YKN8YOD500
ThermocoupleOmegaHH12A 
Hot plateCimarecSP131325Q 
CO2 direct-write laserVersaLaser3.5 
DessicatorFisher Scientific08-595 
Lamp  custom-built
Microtensile tester  custom-built

References

  1. Chen, P. J., Saati, S., Varma, R., Humayun, M. S., Tai, Y. C. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. Journal of Microelectromechanical Systems. 19, 721-734 (2010).
  2. Ren, X., Zheng, N., Gao, Y., Chen, T., Lu, W.

Explore More Articles

Microtensile TestingPolymer NanocompositesMechanically adaptive MaterialsImplantable MicrodevicesEnvironmental ControlEx Vivo CharacterizationYoung s ModulusStimuli responsive MaterialsNeural Probe Substrate

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved