JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Collection, Isolation and Enrichment of Naturally Occurring Magnetotactic Bacteria from the Environment

Published: November 15th, 2012

DOI:

10.3791/50123

1School of Earth Sciences, The Ohio State University, 2School of Environment & Natural Resources, The Ohio State University, 3Institute of Geology and Geophysics, Chinese Academy of Sciences

We demonstrate a method to collect magnetotactic bacteria (MTB) that can be applied to natural waters. MTB can be isolated and enriched from sediment samples using a relatively simple setup that takes advantage of the bacteria's natural magnetism. Isolated MTB can then be examined in detail using both light and electron microscopy.

Magnetotactic bacteria (MTB) are aquatic microorganisms that were first notably described in 19751 from sediment samples collected in salt marshes of Massachusetts (USA). Since then MTB have been discovered in stratified water- and sediment-columns from all over the world2. One feature common to all MTB is that they contain magnetosomes, which are intracellular, membrane-bound magnetic nanocrystals of magnetite (Fe3O4) and/or greigite (Fe3S4) or both3, 4. In the Northern hemisphere, MTB are typically attracted to the south end of a bar magnet, while in the Southern hemisphere they are usually attracted to the north end of a magnet3,5. This property can be exploited when trying to isolate MTB from environmental samples.

One of the most common ways to enrich MTB is to use a clear plastic container to collect sediment and water from a natural source, such as a freshwater pond. In the Northern hemisphere, the south end of a bar magnet is placed against the outside of the container just above the sediment at the sediment-water interface. After some time, the bacteria can be removed from the inside of the container near the magnet with a pipette and then enriched further by using a capillary racetrack6 and a magnet. Once enriched, the bacteria can be placed on a microscope slide using a hanging drop method and observed in a light microscope or deposited onto a copper grid and observed using transmission electron microscopy (TEM).

Using this method, isolated MTB may be studied microscopically to determine characteristics such as swimming behavior, type and number of flagella, cell morphology of the cells, shape of the magnetic crystals, number of magnetosomes, number of magnetosome chains in each cell, composition of the nanomineral crystals, and presence of intracellular vacuoles.

1. MTB Collection

  1. When deciding on a freshwater site to collect magnetotactic bacteria (MTB), it is often best to start with a pond or slow-moving stream that has a soft muddy sediment layer. In this demonstration we collected a sample at the edge of the Olentangy River on the campus of The Ohio State University (OSU) in Columbus, Ohio (USA). While this was a convenient location for our demonstration, the protocol described here is applicable to any aquatic location. The materials used in this protocol can be.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

A magnet is an effective tool that can be used to isolate magnetotactic bacteria (MTB) contained in environmental samples (Figure 1A). A capillary racetrack (Figure 1B) uses the magnetic properties of MTB to attract them through a cotton plug where they can be separated from non-magnetotactic microorganisms also contained within the environmental sample.

Figure 1

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Magnetotactic bacteria are not necessarily found in every aquatic environment8 but when they do occur, they can be found on the order of 100 - 1,000 cells per milliliter2. In order to observe the MTB using optical microscopy, you will need approximately 50 bacteria/ml in your sample8. If there are no or few MTB in your sample, then you will either need to select a new environmental site to collect your samples or you will need to try one or more of the techniques discussed in the next sec.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by grants from the U.S. National Science Foundation (EAR-0920299 and EAR-0745808); U.S. National Science Foundation East Asian and Pacific Summer Institutes; the Geological Society of America Research Grant Program and the Alumni Grants for Graduate Research and Scholarship from The Ohio State University. We would like to thank the editor and two anonymous reviewers for their insightful comments.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Item Name Company Catalogue number Comments (optional)
Glass slides Fisher Scientific S95933
Glass Pasteur pipets Fisher Scientific 13-678-6A
O-ring Hardware store
Cover slips Fisher Scientific 12-542B
Bar magnet Fisher Scientific S95957
Container Any Any plastic or glass container that can hold at least 0.5 L and can be sealed
Cotton Any
Microscope with 60X dry lens Zeiss A 60X dry lens is not absolutely necessary, but this gives a high NA without using oil
Diamond pen Fisher Scientific 08-675
0.22 mm filter Fisher Scientific 09-719C
1 ml syringe Fisher Scientific NC9788564
Microcentrifuge tubes Fisher Scientific 02-681-320
Formvar/Carbon 200 mesh, copper grids Ted Pella Inc. 01800
Uranyl acetate Ted Pella Inc. 19481
Tecnai Spirit TEM FEI
Tecnai F20 S/TEM FEI

  1. Blakemore, R. Magnetotactic bacteria. Science. 190, 377-379 (1975).
  2. Blakemore, R. P. Magnetotactic bacteria. Annual Reviews in Microbiology. 36, 217-238 (1982).
  3. Bazylinski, D. A., Frankel, R. B. Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium. Applied and Environmental Microbiology. 61, 3232-3239 (1995).
  4. Lefevre, C. T., Menguy, N., et al. A Cultured Greigite-Producing Magnetotactic Bacterium in a Novel Group of Sulfate-Reducing Bacteria. Science. 334, 1720-1723 (2011).
  5. Simmons, S. L., Bazylinski, D. A., et al. South-seeking magnetotactic bacteria in the Northern Hemisphere. Science. 311, 371-374 (2006).
  6. Wolfe, R., Thauer, R., et al. A 'capillary racetrack' method for isolation of magnetotactic bacteria. FEMS Microbiology Letters. 45, 31-35 (1987).
  7. Rodgers, F. G., Blakemore, R. P. Intercellular structure in a many-celled magnetotactic prokaryote. Archives of Microbiology. 154, 18-22 (1990).
  8. Moench, T. T., Konetzka, W., et al. A novel method for the isolation and study of a magnetotactic bacterium. Archives of Microbiology. 119, 203-212 (1978).
  9. Balkwill, D., Maratea, D. Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology. 141, 1399-1408 (1980).
  10. Lins, U., Freitas, F., et al. Simple homemade apparatus for harvesting uncultured magnetotactic microorganisms. Brazilian Journal of Microbiology. 34, 111-116 (2003).
  11. Jogler, C., Lin, W., et al. Toward Cloning of the Magnetotactic Metagenome: Identification of Magnetosome Island Gene Clusters in Uncultivated Magnetotactic Bacteria from Different Aquatic Sediments. Applied and Environmental Microbiology. 75, 3972-3979 (2009).
  12. Lin, W., Li, J., et al. Newly Isolated but Uncultivated Magnetotactic Bacterium of the Phylum Nitrospirae from Beijing, China. Applied and Environmental Microbiology. 78, 668-675 (2012).
  13. Li, J., Pan, Y., et al. Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth and Planetary Science Letters. 293, 368-376 (2010).
  14. Oestreicher, Z., Valerde-Tercedor, C. Magnetosomes and magnetite crystals produced by magnetotactic bacteria as resolved by atomic force microscopy and transmission electron microscopy. Micron. 43, 1331-1335 (2012).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved