JoVE Logo
Faculty Resource Center

Sign In




Representative Results






Isolation and Kv Channel Recordings in Murine Atrial and Ventricular Cardiomyocytes

Published: March 12th, 2013



1Experimental and Clinical Research Center (ECRC), Charité Medical Faculty and Max-Delbrück Center for Molecular Medicine (MDC), 2Medical Department, Division of Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, 3Medical Department, Division of Cardiology and Angiology, Campus Mitte, Charité - Universitätsmedizin Berlin

Kv channel dysfunction is associated with cardiac arrhythmias. In order to study the molecular mechanisms that lead to such arrhythmias we utilize a systematic protocol for isolation of atrial and ventricular cardiomyocytes from Kv channel ancillary subunit knockout mice. Isolated cardiomyocytes can then immediately be used for cellular electrophysiological studies, biochemical or immunofluorescence (IF) assays.

KCNE genes encode for a small family of Kv channel ancillary subunits that form heteromeric complexes with Kv channel alpha subunits to modify their functional properties. Mutations in KCNE genes have been found in patients with cardiac arrhythmias such as the long QT syndrome and/or atrial fibrillation. However, the precise molecular pathophysiology that leads to these diseases remains elusive. In previous studies the electrophysiological properties of the disease causing mutations in these genes have mostly been studied in heterologous expression systems and we cannot be sure if the reported effects can directly be translated into native cardiomyocytes. In our laboratory we therefore use a different approach. We directly study the effects of KCNE gene deletion in isolated cardiomyocytes from knockout mice by cellular electrophysiology - a unique technique that we describe in this issue of the Journal of Visualized Experiments. The hearts from genetically engineered KCNE mice are rapidly excised and mounted onto a Langendorff apparatus by aortic cannulation. Free Ca2+ in the myocardium is bound by EGTA, and dissociation of cardiac myocytes is then achieved by retrograde perfusion of the coronary arteries with a specialized low Ca2+ buffer containing collagenase. Atria, free right ventricular wall and the left ventricle can then be separated by microsurgical techniques. Calcium is then slowly added back to isolated cardiomyocytes in a multiple step comprising washing procedure. Atrial and ventricular cardiomyocytes of healthy appearance with no spontaneous contractions are then immediately subjected to electrophysiological analyses by patch clamp technique or other biochemical analyses within the first 6 hours following isolation.

1. Animal Anesthesia and Organ Harvesting

  1. Anaesthetize the mouse by intraperitoneal (i.p.) injection of Ketamine (200 mg/kg BW) and Xylazine (20 mg/kg BW).
  2. To anticoagulate inject 250 IU Heparin i.p. to avoid blood clotting and thrombus formation.
  3. Wait until deep narcosis is reached, which is characterized by areflexia. To check for areflexia, test corneal reflex by gently touching the cornea or test flight reflex by tail pinching.
  4. Transfer the mouse onto operating table and fix .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Isolation of adult murine cardiomyocytes from genetically engineered mice to study the function of specific genes of interest in vitro has become a powerful tool to further understand cardiac pathophysiology. This method is currently used by only a small but increasing number of basic science laboratories worldwide. However, isolation of adult ventricular murine cardiomyocytes can be tricky and needs to be done thoroughly and repetitively by experienced hands. Figure 1 shows freshly isolated exe.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

With the growing development of genetically engineered mouse strains to study cardiac function and cardiac pathology related to gene deletion there is also an increasing interest in specialized methods to study effects of the specific gene deletion in vitro. In our laboratory we study the roles of a family of Kv channel ancillary subunits on cardiac repolarization. The KCNE genes comprise a family of 5 genes (KCNE1-5) that play important roles in human ventricular and atrial repolarization

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was funded by grants from Deutsche Forschungsgemeinschaft (DFG), Fritz-Thyssen-Stiftung and Charité/MDC.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of the Reagent Company
Tetrodotoxin Alomone
4-aminopyridine ICN Biomedicals
Heteropodatoxin 2 Alomone
Tetraethylammonium Sigma Chemicals
Collagenase Type 2 Worthington

  1. Abbott, G. W., Goldstein, S. A., Sesti, F. Do all voltage-gated potassium channels use MiRPs?. Circ. Res. 88, 981-983 (2001).
  2. Abbott, G. W., Sesti, F., Splawski, I., Buck, M. E., Lehmann, M. H., Timothy, K. W., Keating, M. T., Goldstein, S. A. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 97, 175-187 (1999).
  3. Barry, D. M., Trimmer, J. S., Merlie, J. P., Nerbonne, J. M. Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels?. Circ. Res. 77, 361-369 (1995).
  4. Benjamin, E. J., Wolf, P. A., D'Agostino, R. B., Silbershatz, H., Kannel, W. B., Levy, D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 98, 946-952 (1998).
  5. Bou-Abboud, E., Nerbonne, J. M. Molecular correlates of the calcium-independent, depolarization-activated K+ currents in rat atrial myocytes. J. Physiol. 517 (Pt 2), 407-420 (1999).
  6. Gaborit, N., Steenman, M., Lamirault, G., Le, M. N., Le, B. S., Lande, G., Leger, J., Charpentier, F., Christ, T., Dobrev, D., Escande, D., Nattel, S., Demolombe, S. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation. 112, 471-481 (2005).
  7. Guo, W., Xu, H., London, B., Nerbonne, J. M. Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J. Physiol. 521 (Pt 3), 587-599 (1999).
  8. Lundby, A., Ravn, L. S., Svendsen, J. H., Hauns, S., Olesen, S. P., Schmitt, N. KCNE3 mutation V17M identified in a patient with lone atrial fibrillation. Cell Physiol. Biochem. 21, 47-54 (2008).
  9. Ma, K. J., Li, N., Teng, S. Y., Zhang, Y. H., Sun, Q., Gu, D. F., Pu, J. L. Modulation of KCNQ1 current by atrial fibrillation-associated KCNE4 (145E/D) gene polymorphism. Chin Med. J. (Engl.). 120, 150-154 (2007).
  10. McCrossan, Z. A., Abbott, G. W. The MinK-related peptides. Neuropharmacology. 47, 787-821 (2004).
  11. Pongs, O., Schwarz, J. R. Ancillary subunits associated with voltage-dependent K+ channels. Physiol. Rev. 90, 755-796 (2010).
  12. Ravn, L. S., Aizawa, Y., Pollevick, G. D., Hofman-Bang, J., Cordeiro, J. M., Dixen, U., Jensen, G., Wu, Y., Burashnikov, E., Haunso, S., Guerchicoff, A., Hu, D., Svendsen, J. H., Christiansen, M., Antzelevitch, C. Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm. 5, 427-435 (2008).
  13. Ravn, L. S., Hofman-Bang, J., Dixen, U., Larsen, S. O., Jensen, G., Haunso, S., Svendsen, J. H., Christiansen, M. Relation of 97T polymorphism in KCNE5 to risk of atrial fibrillation. Am. J. Cardiol. 96, 405-407 (2005).
  14. Roepke, T. K., Abbott, G. W. Pharmacogenetics and cardiac ion channels. Vascul. Pharmacol. 44, 90-106 (2006).
  15. Roepke, T. K., Kontogeorgis, A., Ovanez, C., Xu, X., Young, J. B., Purtell, K., Goldstein, P. A., Christini, D. J., Peters, N. S., Akar, F. G., Gutstein, D. E., Lerner, D. J., Abbott, G. W. Targeted deletion of kcne2 impairs ventricular repolarization via disruption of I(K,slow1) and I(to,f). FASEB J. 22, 3648-3660 (2008).
  16. Sesti, F., Abbott, G. W., Wei, J., Murray, K. T., Saksena, S., Schwartz, P. J., Priori, S. G., Roden, D. M., George, A. L., Goldstein, S. A. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl. Acad. Sci. U.S.A. 97, 10613-10618 (2000).
  17. Temple, J., Frias, P., Rottman, J., Yang, T., Wu, Y., Verheijck, E. E., Zhang, W., Siprachanh, C., Kanki, H., Atkinson, J. B., King, P., Anderson, M. E., Kupershmidt, S., Roden, D. M. Atrial fibrillation in KCNE1-null mice. Circ. Res. 97, 62-69 (2005).
  18. Yang, Y., Xia, M., Jin, Q., Bendahhou, S., Shi, J., Chen, Y., Liang, B., Lin, J., Liu, Y., Liu, B., et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am. J. Hum. Genet. 75, 899-905 (2004).
  19. Zeng, Z. Y., Pu, J. L., Tan, C., Teng, S. Y., Chen, J. H., Su, S. Y., Zhou, X. Y., Zhang, S., Li, Y. S., Wang, F. Z., et al. [The association of single nucleotide polymorphism of slow delayed rectifier K+ channel genes with atrial fibrillation in Han nationality Chinese]. Zhonghua Xin. Xue. Guan. Bing. Za Zhi. 33, 987-991 (2005).
  20. Zhang, M., Jiang, M., Tseng, G. N. minK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as beta subunit of cardiac transient outward channel? Circ. Circ. Res. 88, 1012-1019 (2001).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved