A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a unique platform for characterizing electrode surfaces in solid oxide fuel cells (SOFCs) that allows simultaneous performance of multiple characterization techniques (e.g. in situ Raman spectroscopy and scanning probe microscopy alongside electrochemical measurements). Complementary information from these analyses may help to advance toward a more profound understanding of electrode reaction and degradation mechanisms, providing insights into rational design of better materials for SOFCs.
Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM, other properties such as local electronic states, ion diffusion coefficient and surface potential can also be investigated17-22. In this work, electrochemical measurements, Raman spectroscopy, and SPM were used in conjunction with a novel test electrode platform that consists of a Ni mesh electrode embedded in an yttria-stabilized zirconia (YSZ) electrolyte. Cell performance testing and impedance spectroscopy under fuel containing H2S was characterized, and Raman mapping was used to further elucidate the nature of sulfur poisoning. In situ Raman monitoring was used to investigate coking behavior. Finally, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) were used to further visualize carbon deposition on the nanoscale. From this research, we desire to produce a more complete picture of the SOFC anode.
1. Fabrication of a YSZ-embedded Mesh Anode Cell
2. Exposure, Polishing, and Modification of Ni Mesh Electrode
3. Preparation and Electrochemical Testing of Full Cells
*Figure 1 presents a schematic of the YSZ-embedded Ni mesh cell, along with a typical photograph and optical micrograph of the embedded mesh.
*For our investigations, cells were electrochemically characterized with an EG&G PAR potentiostat (model 273A) coupled with a Solartron 1255 HF frequency response analyzer using CorrWare and ZPlot softwares (Scribner and Associates). Linear sweep voltammetry and constant-voltage amperometry were used to characterize cell performance, and impedance spectra were acquired in the frequency range of 100 kHz to 0.1 Hz with an amplitude of 10 mV. For the sulfur poisoning study, a certified gas mixture of 100 ppm H2S in H2 was mixed into the fuel gas stream with pure H2 to obtain a 20 ppm H2S/H2 mixture.
4. Post-test Raman Spectromicroscopic Mapping
Raman spectromicroscopy was performed using a Renishaw RM1000 system equipped with a Modu-Laser StellarPro 514 nm Ar-ion laser (5 mW) and a Thorlabs HRP170 633 nm He-Ne laser (17 mW). The system is equipped with an X-Y-Z motorized stage (Prior Scientific H101RNSW) and a 50X objective lens, which together allow for ~2 μm mapping resolution. Renishaw WiRE 2.0 software was used in conjunction with the hardware. Data was processed using MATLAB (MathWorks).
5. In situ Raman Monitoring of Coking8
*The in situ Raman analysis was performed with a custom-modified Harrick Scientific high-temperature reaction chamber.The chamber is equipped with a quartz window cap, gas connections, and a cooling line. A schematic and photograph is provided in Figure 2.
CAUTION: Cooling water should be used to protect the optical microscope on the Raman system from heating!
6. Nanoscale Visualization of Coking by AFM and EFM
Access restricted. Please log in or start a trial to view this content.
Sulfur Poisoning Analysis
Shown in Figure 4 are typical I-V and I-P curves of a cell with a Ni mesh electrode under H2 and 20 ppm H2S condition. Clearly, the introduction of even just a few ppm of H2S can poison the Ni-YSZ anode and cause considerable performance degradation.
In order to more intensively understand the poisoning behavior of the Ni-YSZ anode, AC impedance spectroscopy of the cell was performed under open...
Access restricted. Please log in or start a trial to view this content.
Sulfur Poisoning Analysis
The impedance spectra shown in Figure 5 suggest that sulfur poisoning is a surface or interfacial phenomenon rather than one that affects the bulk of the material. Specifically, the quick poisoning of the Ni mesh electrode (Figure 6) might result from the direct exposure of Ni electrode to the fuel gas and subsequent sulfur adsorption; gas diffusion would not limit the rate of this process as much as in the case of a thick porous Ni/YSZ ...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
This work was supported by the HeteroFoaM Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (BES) under Award Number DE-SC0001061.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Nickel mesh | Alfa Aesar | CAS: 7440-02-0 | |
Ni Foil | Alfa Aesar | CAS: 7440-02-0 | |
YSZ powder | TOSOH | Lot No:S800888B | |
Ag paste | Heraeus | C8710 | |
Barium oxide | Sigma-Aldrich | 1304-28-5 | |
Silver wire | Alfa Aesar | 7440-22-4 | |
Acetone | VWR | 67-64-1 | |
Ethanol | Alfa Aesar | 64-17-5 | |
UHP H2 | Airgas | 99.999% purity | |
100 ppm H2S/H2 | Airgas | Certified custom mix | |
n-type Si AFM tip | MikroMasch | NSC16 | 10 nm tip radius |
Au coated AFM tip | MikroMasch | CSC11/Au/Cr | 20-30 nm tip radius |
Raman Spectrometer | Renishaw | RM1000 | |
Ar Ion laser | ModuLaser | StellarPro 150 | |
He-Ne laser | Thorlabs | HPL170 | |
Atomic Force Microscope | Veeco | Nanoscope IIIA | |
Moving Raman Stage | Prior Scientific | H101RNSW | |
Optical Microscope | Leica | DMLM | |
Scanning Electron Microscope | LEO | 1550 | |
Tube Furnace | Applied Test Systems | 2110 | |
Polisher | Allied High Tech Products | MetPrep | |
6 μm Grinding media | Allied High Tech Products | 50-50040M | |
3 μm Polishing media | Allied High Tech Products | 90-30020 | |
1 μm Polishing media | Allied High Tech Products | 90-30015 | |
0.1 μm Polishing media | Allied High Tech Products | 90-32000 | |
Raman chamber | Harrick Scientific | HTRC |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved