A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The purpose of this publication is to present our original work on a multi-muscle surface electromyographic approach to quantitatively characterize respiratory muscle activation patterns in individuals with chronic spinal cord injury using vector-based analysis.
During breathing, activation of respiratory muscles is coordinated by integrated input from the brain, brainstem, and spinal cord. When this coordination is disrupted by spinal cord injury (SCI), control of respiratory muscles innervated below the injury level is compromised1,2 leading to respiratory muscle dysfunction and pulmonary complications. These conditions are among the leading causes of death in patients with SCI3. Standard pulmonary function tests that assess respiratory motor function include spirometrical and maximum airway pressure outcomes: Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Maximal Inspiratory Pressure (PImax) and Maximal Expiratory Pressure (PEmax)4,5. These values provide indirect measurements of respiratory muscle performance6. In clinical practice and research, a surface electromyography (sEMG) recorded from respiratory muscles can be used to assess respiratory motor function and help to diagnose neuromuscular pathology. However, variability in the sEMG amplitude inhibits efforts to develop objective and direct measures of respiratory motor function6. Based on a multi-muscle sEMG approach to characterize motor control of limb muscles7, known as the voluntary response index (VRI)8, we developed an analytical tool to characterize respiratory motor control directly from sEMG data recorded from multiple respiratory muscles during the voluntary respiratory tasks. We have termed this the Respiratory Motor Control Assessment (RMCA)9. This vector analysis method quantifies the amount and distribution of activity across muscles and presents it in the form of an index that relates the degree to which sEMG output within a test-subject resembles that from a group of healthy (non-injured) controls. The resulting index value has been shown to have high face validity, sensitivity and specificity9-11. We showed previously9 that the RMCA outcomes significantly correlate with levels of SCI and pulmonary function measures. We are presenting here the method to quantitatively compare post-spinal cord injury respiratory multi-muscle activation patterns to those of healthy individuals.
1. Settings
2. RMCA Protocol
3. Data Analysis
Figure 3 represents the electromyogram and airway pressure (on top) simultaneously recorded during MEPT from a non-injured (left) and SCI (right) individuals. Note decreased airway pressure and absence of sEMG activity in expiratory muscles in an SCI subject when compared to a non-injured individual (marked with gray ellipses). Note also that start of the task, as marked on the bottom, is associated with increased sEMG activity and raising airway pressure.
Figure 4
Standard clinical tests to evaluate respiratory motor function after SCI and other disorders include the pulmonary function tests and the American Spinal Injury Association Impairment Scale (AIS) evaluation14,15. However, these tools are not designed for quantitative evaluation of the trunk and respiratory motor control. In our previously published work9, we have shown that the RMCA is a valid method to quantitatively evaluate the respiratory motor function affected by SCI. We have demonstrated that...
No conflict of interest to declare.
This work was supported by Christopher and Dana Reeve Foundation (Grant CDRF OA2-0802-2), Kentucky Spinal Cord and Head Injury Research Trust (Grant 9-10A - KSCHIRT), Craig H. Neilsen Foundation (Grant 1000056824 - HN000PCG) and National Institutes of Health: National Heart Lung and Blood Institute (Grant 1R01HL103750-01A1).
Name | Company | Catalog Number | Comments |
PowerLab System 16/35 | ADInstruments | PL3516 | Number of units depends on number of channels recorded |
EMG System MA 300 | Motion Lab Systems | MA300-XVI | Number of units depends on number of channels recorded |
Low Pressure Transducer MP45 | Validyne | MP45-40-871 | |
Basic Carrier Demodulator CD15 | Validyne | CD15-A-2-A-1 | |
Air Pressure Manometer | Boehringer | 4103 | Needed for MP45 calibration |
Event Marker | Hand held switch that when pressed gives a DC voltage and sound output (including 5-sec long mark) | ||
Alcohol Wipes | Henry Schein | 1173771 | Needed for electrodes placement |
Electrode Gel | Lectron II | 36-3000-25 | Needed for electrodes placement |
Tagaderm | Henry Schein | 7779152 | Needed for electrodes placement |
Noseclip | Henry Schein | 1089460 | |
T-piece Ventilator Monitoring Circuit with One-way Valves | Alleglance (Airlife) | 1504 | |
Air Tube | UnoMedical | 400E | |
Table 1. List of specific equipment and supplies used for the Respiratory Motor Control Assessment. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved