Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Use of photonic crystal slow light waveguides and cavities has been widely adopted by the photonics community in many differing applications. Therefore fabrication and characterization of these devices are of great interest. This paper outlines our fabrication technique and two optical characterization methods, namely: interferometric (waveguides) and resonant scattering (cavities).

Abstract

Slow light has been one of the hot topics in the photonics community in the past decade, generating great interest both from a fundamental point of view and for its considerable potential for practical applications. Slow light photonic crystal waveguides, in particular, have played a major part and have been successfully employed for delaying optical signals1-4 and the enhancement of both linear5-7 and nonlinear devices.8-11

Photonic crystal cavities achieve similar effects to that of slow light waveguides, but over a reduced band-width. These cavities offer high Q-factor/volume ratio, for the realization of optically12 and electrically13 pumped ultra-low threshold lasers and the enhancement of nonlinear effects.14-16 Furthermore, passive filters17 and modulators18-19 have been demonstrated, exhibiting ultra-narrow line-width, high free-spectral range and record values of low energy consumption.

To attain these exciting results, a robust repeatable fabrication protocol must be developed. In this paper we take an in-depth look at our fabrication protocol which employs electron-beam lithography for the definition of photonic crystal patterns and uses wet and dry etching techniques. Our optimised fabrication recipe results in photonic crystals that do not suffer from vertical asymmetry and exhibit very good edge-wall roughness. We discuss the results of varying the etching parameters and the detrimental effects that they can have on a device, leading to a diagnostic route that can be taken to identify and eliminate similar issues.

The key to evaluating slow light waveguides is the passive characterization of transmission and group index spectra. Various methods have been reported, most notably resolving the Fabry-Perot fringes of the transmission spectrum20-21 and interferometric techniques.22-25 Here, we describe a direct, broadband measurement technique combining spectral interferometry with Fourier transform analysis.26 Our method stands out for its simplicity and power, as we can characterise a bare photonic crystal with access waveguides, without need for on-chip interference components, and the setup only consists of a Mach-Zehnder interferometer, with no need for moving parts and delay scans.

When characterising photonic crystal cavities, techniques involving internal sources21 or external waveguides directly coupled to the cavity27 impact on the performance of the cavity itself, thereby distorting the measurement. Here, we describe a novel and non-intrusive technique that makes use of a cross-polarised probe beam and is known as resonant scattering (RS), where the probe is coupled out-of plane into the cavity through an objective. The technique was first demonstrated by McCutcheon et al.28 and further developed by Galli et al.29

Protocol

Disclaimer: The following protocol gives a general process flow covering the fabrication and characterization techniques for photonic crystal waveguides and cavities. The process flow is optimized for the specific equipment available in our laboratory, and parameters may differ if other reagents or equipment is used.

1. Sample Preparation

  1. Sample Cleaving - take the silicon-on-insulator (SOI) wafer and use a diamond scribe to scratch a line approximately 1-2 mm long from the edge of the silicon surface, ensuring that the scratch extends over the edge of the wafer. Align the scratch to a straight edge (e.g. that of a microscope slide) and apply even positive pressure to both sides of the scratch: the wafer will cleave along the crystal plane at the scratch location. Repeat this procedure to define the entire chip.
  2. Sample Cleaning - Place the sample into the CAUTION acetone using tweezers and clean in an ultrasonic bath for 1-2 min. Remove the sample from the acetone; rinse any remaining acetone from the sample using CAUTION isopropanol (30 sec) (both acetone and isopropanol are flammable: use good ventilation and avoid all ignition sources). Dry the sample using a clean dry nitrogen gun.
  3. Spin resist - place the sample onto the spin-coater. Pipette electron sensitive resist CAUTION ZEP520A (ZEP520A is flammable, harmful by inhalation and contact with skin and eyes should be avoided) onto the sample - use enough resist to completely cover the sample without the resist flowing over the edge. Spin the sample so as to give an approx. 350 nm thick film and bake on a hotplate at 180 °C for 10 min. We found this thickness to be the optimal thickness that balances resolution and etch resistance (see later).

2. Pattern Definition

  1. Design - using appropriate software, simulate the required photonic crystal pattern. A number of useful software packages are available, including but not limited to: MIT Photonic Bands (MPB), FullWAVE(RSoft), MIT Electromagnetic Equation Propagation (MEEP).
  2. Pattern Generation - create the exposure files (gds format in general) and proximity error correct using appropriate software.30
  3. Pattern Exposure - load the sample into the chamber of the electron beam lithography system (LEO 1530/ Raith Elphy) and pump down. Once vacuum has been achieved, switch on the EHT supply and set to 30 kV. Leave the system in this state for 1 hr to allow the sample, stage and chamber to reach an equilibrium temperature. Set-up the exposure as indicated in the user-manual of your specific electron beam lithography system . Expose the sample using an appropriate basic step size (e.g. 2 nm) (this being the minimum pixel size that the system can expose), a settling time of at least 1 ms (this being the time the system waits between moving the beam and exposing the particular portion of the pattern), and an area dose of 55 μAcm-2.
  4. Sample Development - using CAUTION Xylene (Xylene is both flammable and highly toxic work in a well-ventilated area away from ignition sources and avoid contact with skin and eyes) at a temperature of 23 °C develop the sample for 45 sec. Rinse in isopropanol.

3. Patten Transfer

  1. RIE Chamber Cleaning - Set the flow rates of argon and hydrogen to 200 sccm. Throttle down the pump, via a butterfly valve, to achieve chamber pressure of 1 × 10-1 mBar. Set the RF power to 100 W, ignite the plasma and run for at least 10 min - a DC bias of approximately 700 V should be observed. After switching off the Ar/H2 plasma, allow the chamber to pump for approximately 1 min. Set the flow rate of oxygen into the chamber to 200 sccm and again throttle the chamber pressure down to 1 × 10-1 mBar. Ignite a second plasma of oxygen with a power of 100 W and run for 5 min. After these procedures, the chamber will be free of contaminants, such as polymer residues, from any previous dry etch. We perform this procedure before every change in etch recipe to ensure maximum repeatability. This procedure is optimised for our system which consists of a parallel-plate, cathode loaded, RIE; with a main chamber 12 inches in diameter by 14 inches in height, including a 12 inch port with both throttling valve and turbo-molecular pump attached.
  2. Photonic Crystal Etching - load the sample into the RIE main chamber and pump the system down to a background pressure of <3 × 10-6 mBar to ensure the chamber is free of water vapour. Begin the etch by pre-conditioning the chamber with the etching gasses (namely CHF3 and SF6): set the flow rate of both gasses to 100 sccm (i.e. set a gas ratio of 1:1) and using the throttle bring the chamber pressure to 5 × 10-2 mBar; allow the gasses to flow for at least 10 min. After pre-conditioning, set the RF power to approximately 20 W and ignite a plasma; etch the sample for approximately 2 min (the etch rate of silicon for these etch parameters is approximately 150 nm/min), while ensuring that a chamber pressure of 5 × 10-2 mBar is maintained. A DC bias between 200-220 V should be achieved throughout the etching period.
  3. Sample Cleaning to remove remaining electron sensitive resist - after dry etching, clean the sample by rinsing in CAUTION 1165 Remover (1165 is flammable and can cause irritation to eyes, nose and respiratory tract) with ultrasonic agitation for 1-2 min, followed by acetone and isopropanol as outlined above (step 1.2).
  4. Membrane Isolation - spin-coat the sample with UV sensitive photo resist CAUTION Microposit S1818 G2 (S1818 G2 is both flammable and causes irritation to eyes, nose and respiratory tract) (see step 1.3). Using an appropriate photomask, define windows within the resist above the photonic crystal patterns using the UV mask aligner. Expose the sample for approximately 30-45 sec. Develop the resist in CAUTION Microposit Developer MF-319 (MF-319 is an alkaline liquid and can cause irritation to eyes, nose and respiratory tract) for 30-45 sec, rinsing afterwards in de-ionised water. Prepare a plastic beaker with a mixture of CAUTION 1:5 Hydrofluoric acid (1.1499 g/ ml 48-51% HF) (HF is extremely corrosive and readily destroys tissue, when handling use full personal protective equipment rated for HF) to de-ionised water. Note that for safety reasons only plastic beakers and tweezers should be used with Hydrofluoric acid. Submerge the sample in the Hydrofluoric acid mixture for 15 min. After etching, rinse the sample thoroughly in de-ionised water. Remove the remaining photo-resist using acetone and isopropanol (see step 1.2) - from this stage and onwards ultrasonic agitation cannot be used. To ensure the sample is as clean as possible, follow the acetone and isopropanol wash with a rinse in CAUTION Piranha solution (Piranha solution is very energetic, potentially explosive and attacks organic materials, when handling use full personal protective equipment) (3:1 CAUTION sulphuric acid (sulphuric acid is corrosive and very toxic, when handling use personal protective equipment and avoid inhalation of vapours or mists) to CAUTION hydrogen peroxide (hydrogen peroxide is very hazardous in case of skin and eye contact, when handling use personal protective equipment)) for 5 min, then rinse the sample in de-ionised water, acetone and isopropanol. Note that for safety reasons only glass beakers and metal tweezers should be used with the Piranha solution. As Piranha solution can explode in contact with acetone or isopropanol, it should be handled away from these reagents.
  5. Facet Cleaving - if preparing a photonic crystal slow-light waveguide, the sample requires facet cleaving. Cleave the sample by following the same procedure as outlined in step 1.1, except that as small a scratch as possible should be used. An SOI chip with ~700 μm thick substrate can be reliably cleaved down to 4-5 mm long samples.

4. Photonic Crystal Slow-light Waveguide Characterization

  1. Preliminary preparation of the setup - connect the output of a CAUTION broadband amplified spontaneous emission (ASE) light source (invisible IR radiation: avoid unnecessary high powers, cover beam path if possible) to a 3 dB fiber splitter and use each of the outputs to couple light into the two arms of a free-space Mach-Zehnder interferometeter (MZI), as shown in Figure 9. Use aspheric lenses to collimate the light output from the fibers. In one of the arms of the interferometer, use two additional aspheric lenses to couple the light beam in and out of the sample chip. Place a polarization beam splitter (PBS) in the sample arm to TE-polarise the light inputting the sample. Use aspheric lenses to couple the collimated output beams from both arms back into a second 3 dB fiber splitter, where they will recombine. Connect one of the outputs to an infrared detector and use the reading of the detector to maximise the light coupling into the sample; connect the other output to an optical spectrum analyzer (OSA). The two arms of the MZI should have approximately the same optical length when in the presence of the sample: make sure that the fibers in the two arms of the MZI have the same nominal length and include a tunable delay stage in the reference arm to allow for fine adjustment of its length. In the sample arm, mount the aspheric lenses onto xyz precision stages to obtain the best coupling into the sample.
  2. Adjust reference arm length - couple the light beam to a blank (i.e. without photonic crystal) ridge waveguide (of the same type as the access waveguides that feed light inside the photonic crystals) within the same chip in the sample arm. Run a continuous scan on the OSA and observe the measured wavelength spectra. If the two arms of the MZI have approximately the same optical length, the spectra exhibit fringes due to constructive and destructive interference; these fringes will not appear if the arms of the MZI have very different optical lengths (>~cm). The fringe spacing is inversely proportional to the difference in optical path length between the two arms. Move the delay stage to make the reference arm shorter and observe the fringes in the OSA: if they become denser (sparser), the reference arm is shorter (longer) than the sample arm. Set the delay stage to make sure that the reference arm is shorter than the sample arm and results in a fringe spacing of about 5 to 10 fringes in a 10 nm wavelength range (see Figure 10a). Finally, perform this optimization on the device that provides the maximum delay and then keep the delay fixed throughout the measurement of the entire sample.
  3. Calibration run - while still aligned on the blank waveguide, run three scans on the OSA: one scan for the interference spectrum and one scan for each of the two arms separately (obtained by blocking the other arm). Use a resolution of 0.05-0.1 nm. Record each measured spectrum.
  4. Slow light data acquisition - run and record three spectra as in step 4.3 for each photonic crystal waveguide on the chip.
  5. Fourier data analysis - the interference spectrum (interferogram) I(ω) is mathematically expressed by:
    I(ω) = S(ω) + R(ω) + sqrt[S(ω)R(ω)]{exp[iΦ(ω) - iωτ] + c.c.},
    where S(ω) and R(ω) are the spectral densities measured separately from the sample and reference arms, respectively. The delay τ is set by the position of the delay stage in the reference arm. The information on the dispersion of the photonic crystal waveguide is contained in the phase term, which we must extract from the measured data.
    Subtract the non-interfering background S(ω)+R(ω) from the interferogram to isolate only the interfering term. Calculate the Fourier transform of the interfering term: the term sqrt(SR)exp[i(Φ- ωτ)] and its complex conjugate correspond to peaks centred at t=τ and t=-τ, respectively. Filter numerically one of the two terms and transform back to the frequency domain. Differentiate the phase Φ(ω) - ωτ of the resulting data with respect to ω to obtain Δτg, the difference in group delay between the two arms. The group index ng=c/vg, with vg the group velocity, is given by:
    ng = (ΔτgPhC - Δτgcal)c/L + ncal,
    where Δτgcal is obtained from the calibration data taken from the blank waveguide, L is the photonic crystal waveguide length and ncal=2.7 is the effective index of the reference ridge waveguide. The contribution to the delay from the various optical elements of the setup is taken into account in the calibration run, and is therefore subtracted in this step.
  1. Transmission curve - calculate the transmission curve by normalising the sample spectrum of a photonic crystal waveguide to that of the blank waveguide.

5. Photonic Crystal Cavity Characterization

  1. Setup - the preparation of the setup (Figure 14) for RS includes: switching of the exchangeable element to the polarising beam splitter; inserting a polariser in the input arm as well as an analyzer in the output arm; flip a mirror into the probe arm to allow the use of a near-infrared source; allow the illumination of the sample. Mount the sample vertically with a 45° orientation to axis of the polarizer (Figure 18) on a differential driven xyz micro-block and adjust the micro-block so that the sample is in focus and a cavity can be seen with the camera, as in Figure 15 (left). Using an amplified spontaneous emission (ASE) source, align the beam with the centre of the cavity Figure 15 (right). Flip away the illumination mirror and allow the output arm to enter the spectrometer (monochromator with attached array detector). Start a broad scan with a low to moderate resolution in order to identify the cavity peaks. Obtain the coarse wavelength of the resonance in the ASE scan (Figure 16a) with an accuracy of 1 nm. It is also possible to acquire the broad scan with a CAUTION tunable laser source (TLS) (Figure 16b) (invisible IR radiation: avoid unnecessary high powers, cover beam path if possible). One has to be careful that the resolution is set to the highest value in order to sample the line-widths of every peak.
  2. Perform high-resolution scans on the identified peaks - connect the TLS to the input arm and attenuate the beam to a mW level. Prepare for the high resolution scan by allowing the output arm to be collected by the photodetector and setting up a continuous sweep scan with a resolution of 1 pm for a 2 nm range centred at the previously found resonance wavelength. The importance of this step is to improve the signal-to-noise ratio (SNR) with the aim to obtain a Lorentzian line-shape resonance: change the xyz position of the micro-block and re-run the scan until the SNR is maximised and the line-shape is close to that of a Lorentzian, as shown in the representative result section.

Results

Fabricated samples

Figure 1 shows a scanning electron microscope (SEM) image of an exposed and developed pattern in electron beam resist - it is evident from the "clean" edge between the resist and the silicon substrate that complete exposure/development has been accomplished. Exposure of dose test patterns, consisting of simple repeated shapes (in our case 50 × 50 μm squares), each with a differing base dose, are used to determine the correct dose factor and developmen...

Discussion

Sample fabrication

Our choice of electron-beam resist (i.e. ZEP 520A) is due to its simultaneously high resolution and etch resistance. We believe that ZEP 520A may be affected by the UV light emitted from overhead laboratory lights; as such we recommend placing spin-coated samples in UV opaque containers while moving them from one laboratory to another.

Moving onto defining the photonic crystal pattern, before exposing the sample we have found that allowing t...

Disclosures

No conflicts of interest declared.

Acknowledgements

The authors gratefully acknowledge Dr Matteo Galli, Dr Simone L. Portalupi and Prof. Lucio C. Andreani from the University of Pavia for helpful discussions related to the RS technique and the execution of measurements.

Materials

NameCompanyCatalog NumberComments
Name Company Catalogue number Comments (optional)
AcetoneFisher ScientificA/0520/17CAUTION: flammable, use good ventilation and avoid all ignition sources.
IsopropanolFisher ScientificP/7500/15CAUTION: flammable, use good ventilation and avoid all ignition sources.
Electron Beam resistMarubeni Europe plc.ZEP520ACAUTION: flammable, harmful by inhalation, avoid contact with skin and eyes.
XyleneFisher ScientificX/0100/17CAUTION: flammable and highly toxic, use good ventilation, avoid all ignition sources, avoid contact with skin and eyes.
Microposit S1818 G2Chestech Ltd.10277866CAUTION: flammable and causes irritation to eyes, nose and respiratory tract.
Microposit Developer MF-319Chestech Ltd.10058721CAUTION: alkaline liquid and can cause irritation to eyes, nose and respiratory tract.
Hydrofluoric AcidFisher Scientific22333-5000CAUTION: extremely corrosive, readily destroys tissue; handle with full personal protective equipment rated for HF.
Microposit 1165 RemoverChestech Ltd.10058734CAUTION: flammable and causes irritation to eyes, nose and respiratory tract.
Sulphuric AcidFisher ScientificS/9120/PB17CAUTION: corrosive and very toxic; handle with personal protective equipment and avoid inhalation of vapours or mists.
Hydrogen PeroxideFisher ScientificBPE2633-500CAUTION: very hazardous in case of skin and eye contact; handle with personal protective equipment.
   Equipment
Silicon-on-Insulator waferSoitecG8P-110-01 
Diamond ScribeJ & M Diamond Tool Inc.HS-415 
Microscope slidesFisher ScientificFB58622 
BeakersFisher ScientificFB33109 
TweezersSPI SuppliesPT006-AB 
Ultrasonic BathCamlab1161436 
Spin-CoaterElectronic Micro Systems Ltd.EMS 4000 
PipetteFisher ScientificFB55343 
E-beam Lithography SystemRaith GmbhRaith 150 
Reactive Ion Etching SystemProprietary In-house Designed-- 
UV Mask AlignerKarl SussMJB-3 
ASE sourceAmonicsALS-CL-15-B-FACAUTION: invisible IR radiation.
Single mode fibersThorlabsP1-SMF28E-FC-2 
3 dB fiber splittersThorlabsC-WD-AL-50-H-2210-35-FC/FC 
Aspheric lensesNew Focus5720-C 
XYZ stagesMelles Griot17AMB003/MD 
Polarizing beamsplitter cubeThorlabsPBS104 
IR detectorNew Focus2033 
100× ObjectiveNikonBD Plan 100x 
OscilloscopeTektronixTDS1001B 
Optical Spectrum AnalyzerAdvantestQ8384 
IR sensor cardNewportF-IRC2 
TLS sourceAgilent81940ACAUTION: invisible IR radiation.
IR CameraElectrophysics7290A 
IR DetectorNew Focus2153 
Digital MultimeterAgilent34401A 
IlluminationStocker YaleLite Mite 
MonochromatorSpectral ProductsDK480 
Array DetectorAndorDU490A-1.7 
GIF FiberThorlabs31L02 

References

  1. Baba, T., Kawasaki, T., Sasaki, H., Adachi, J., Mori, D. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Opt. Express. 16 (12), 9245-9253 (2008).
  2. Melloni, A., Canciamilla, A., et al. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photon. J. 2 (2), 181-194 (2010).
  3. Ishikura, N., Baba, T., Kuramochi, E., Notomi, M. Large tunable fractional delay of slow light pulse and its application to fast optical correlator. Opt. Express. 19 (24), 24102-24108 (2011).
  4. Beggs, D. M., Rey, I. H., Kampfrath, T., Rotenberg, N., Kuipers, L., Krauss, T. F. Ultrafast tunable optical delay line based on indirect photonic transitions. Phys. Rev. Lett. 108 (21), 213901 (2012).
  5. Beggs, D. M., White, T. P., O'Faolain, L., Krauss, T. F. Ultracompact and low-power optical switch based on silicon photonic crystals. Opt. Lett. 33 (2), 147-149 (2008).
  6. Nguyen, H. C., Sakai, Y., Shinkawa, M., Ishikura, N., Baba, T. 10 Gb/s operation of photonic crystal silicon optical modulators. Opt. Express. 19 (14), 13000-13007 (1364).
  7. Kampfrath, T., Beggs, D. M., White, T. P., Melloni, A., Krauss, T. F., Kuipers, L. Ultrafast adiabatic manipulation of slow light in a photonic crystal. Phys. Rev. A. 81 (4), 043837 (2010).
  8. Monat, C., Corcoran, B., et al. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Opt. Express. 17 (4), 2944-2953 (2009).
  9. Corcoran, B., Monat, C., et al. light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photon. 3, 206-210 (2009).
  10. Li, J., O'Faolain, L., Rey, I. H., Krauss, T. F. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. Opt. Express. 19 (5), 4458-4463 (2010).
  11. Checoury, X., Han, Z., Boucaud, P. Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation. Phys. Rev. B. 82 (4), 041308 (2010).
  12. Y, Photonic crystal nanocavity laser with a single quantum dot gain. Opt. Express. 17 (18), 15975-15982 (2009).
  13. Ellis, B., Mayer, M. A., et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nature Photon. 24, 297-300 (2011).
  14. Galli, M., Gerace, D., et al. Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities. Opt. Express. 18 (25), 26613-26624 (2010).
  15. Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E., Tanabe, T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express. 13 (7), 2678-2687 (2005).
  16. Shambat, G., Rivoire, K., Lu, J., Hatami, F., Vučkovič, J. Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers. Opt. Express. 18 (12), 12176-12184 (2010).
  17. Fan, S., Villeneuve, P. R., Joannopoulos, J. D., Haus, H. A. Channel drop filters in photonic crystals. Opt. Express. 3 (1), 4-11 (1998).
  18. Tanabe, T., Nishiguchi, K., Kuramochi, E., Notomi, M. Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. Opt. Express. 17 (25), 22505-22513 (2009).
  19. Nozaki, K., Tanabe, T., et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photon. 4, 477-483 (2010).
  20. Notomi, M., Yamada, K., Shinya, A., Takahashi, J., Takahashi, C., Yokohama, I. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87 (25), 253902 (2001).
  21. Labilloy, D., Benisty, H., Weisbuch, C., Smith, C. J. M., Krauss, T. F., Houdré, R., Oesterle, U. Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots. Phys. Rev. B. 59 (3), 1649-1652 (1999).
  22. Inanç Tarhan, I., Zinkin, M. P., Watson, G. H. Interferometric technique for the measurement of photonic band structure in colloidal crystals. Opt. Lett. 20 (14), 1571-1573 (1995).
  23. Galli, M., Marabelli, F., Guizzetti, G. Direct measurement of refractive-index dispersion of transparent media by white-light interferometry. Appl. Opt. 42 (19), 3910-3914 (1364).
  24. Galli, M., Bajoni, D., Marabelli, F., Andreani, L. C., Pavesi, L., Pucker, G. Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry. Phys. Rev. B. 69 (11), 115107 (2004).
  25. Vlasov, Y. A., O'Boyle, M., Hamann, H. F., McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature. 438, 65-69 (2005).
  26. Gomez-Iglesias, A., O'Brien, D., O'Faolain, L., Miller, A., Krauss, T. F. Direct measurement of the group index of photonic crystal waveguide via Fourier transform spectral interferometry. Appl. Phys. Lett. 90 (26), 261107 (2007).
  27. Akahane, Y., Asano, T., Song, B. -. S., Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature. 425, 944-947 (2003).
  28. McCutcheon, M. W., Rieger, G. W., et al. Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities. Appl. Phys. Lett. 87 (22), 221110 (2005).
  29. Galli, M., Portalupi, S. L., Belotti, M., Andreani, L. C., O'Faolain, L., Krauss, T. F. Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Appl. Phys. Lett. 94 (7), 71101 (2009).
  30. WÃest, R., Strasser, P., Jungo, M., Robin, F., Erni, D., Jückel, H. An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices. Microelectron Eng. 67-68, 182-188 (2003).
  31. Tanaka, Y., Asano, T., Akahane, Y., Song, B. -. S., Noda, S. Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes. Appl. Phys. Lett. 82 (11), 1661 (2003).
  32. Asano, T., Song, B. -. S., Noda, S. Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities. Opt. Express. 14 (5), 1996-2002 (2006).
  33. O'Faolain, L., Schulz, S. A., et al. Loss engineered slow light waveguides. Opt. Express. 18 (26), 27627-27638 (2010).
  34. Joannopoulos, J. D., Johnson, S. G., Winn, J. N., Meade, R. D. . Photonic crystals, molding the flow of light. , (2008).
  35. Li, J., White, T. P., O'Faolain, L., Gomez-Iglesias, A., Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express. 16 (9), 6227-6232 (2008).
  36. Takeda, M., Ina, H., Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72 (1), 156-160 (1982).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Photonic CrystalSlow Light WaveguidesPhotonic Crystal CavitiesFabricationCharacterizationElectron beam LithographyEtchingTransmissionGroup IndexSpectral InterferometryFourier Transform AnalysisMach Zehnder Interferometer

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved