JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Angiogenesis in the Ischemic Rat Lung

Published: February 8th, 2013

DOI:

10.3791/50217

1Johns Hopkins Asthma and Allergy Center, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University

The lung is perfused by both the systemic bronchial artery and pulmonary arteries. In most lung pathologies, it is the smaller systemic vasculature that shows robust neovascularization. Cessation of pulmonary blood flow promotes brisk bronchial angiogenesis. We provide surgical details of inducing left pulmonary artery ischemia that promotes bronchial neovascularization.

The adult lung is perfused by both the systemic bronchial artery and the entire venous return flowing through the pulmonary arteries. In most lung pathologies, it is the smaller systemic vasculature that responds to a need for enhanced lung perfusion and shows robust neovascularization. Pulmonary vascular ischemia induced by pulmonary artery obstruction has been shown to result in rapid systemic arterial angiogenesis in man as well as in several animal models. Although the histologic assessment of the time course of bronchial artery proliferation in rats was carefully described by Weibel 1, mechanisms responsible for this organized growth of new vessels are not clear. We provide surgical details of inducing left pulmonary artery ischemia in the rat that leads to bronchial neovascularization. Quantification of the extent of angiogenesis presents an additional challenge due to the presence of the two vascular beds within the lung. Methods to determine functional angiogenesis based on labeled microsphere injections are provided.

Systemic angiogenesis in the lung is well-recognized. In disease states such as asthma 2, interstitial pulmonary fibrosis 3, cancer 4, and chronic pulmonary thromboembolism 5, the systemic vasculature in and surrounding the lung proliferates and invades the pulmonary parenchyma. However, animal models to study this differential activation of the systemic rather than the pulmonary circulation are few. Perhaps the most reproducible model of systemic neovascularization in the lung of the adult mammal is that which occurs after inducing chronic pulmonary artery ischemia. The response to left pulmonary artery obstruction ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All protocols performed on rats have been approved by the Johns Hopkins University Animal Care and Use Committee and in accordance with NIH guidelines. Whenever possible, the animal should be surgically prepped in an area separate from the surgical area to minimize contamination of the surgical site.

1. Anesthesia/analgesia

  1. Place rat (Sprague Dawley male rats, 125-150 g; Harlan, Indianapolis, IN) in an induction chamber infused with 3% isoflurane.
  2. Place anesthetized rat o.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Vascular cast: Results of the effects of left pulmonary artery ischemia in the rat are depicted in Figure 1. Shown is a methacrylate cast of the bronchial vasculature and the extensive vascularity of the left airway tree 28 days after LPAL. To obtain this cast, the systemic vasculature was injected with a methacrylate mixture (red), retrograde into the descending aorta and the trachea was cannulated and injected with a white silicon based material. This vascular cast provides a remarkable visuali.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Left pulmonary artery ligation in all species tested leads to robust systemic neovascularization of the ischemic lung. We have presented the details of the surgical approach in a rat model. Our results produced by vascular casting, histopathology, and in vivo labeling demonstrate that bronchial arteries proliferate and perfuse the pulmonary parenchyma. Thus, the mechanisms of bronchial angiogenesis can be studied in an animal model that parallels the human condition of chronic pulmonary thromboembolism. .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We acknowledge the work of Dr. Adlah Sukkar, M.D. in assisting with casting of the lung. This work has been funded by NHLBI, HL088005.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Reagents: Company    
buprenorphine hydrochloride, Puralube Butler Schein    
bupivicaine APP Pharmaceuticals    
Povidone-Iodine swabstick Dynarex Corporation    
polypropylene suture size 6-0, 3/8 circle reverse cutting needle Myco Medical    
PE20 tubing Becton Dickinson    
15 μm crimson polystyrene fluorospheres Invitrogen    
1 ml Hamilton glass syringe Hamilton Company    
Equipment:      
Genie Plus syringe pump Kent Scientific    
Fluorescence Spectrophotometer Digilab    
Rodent Ventilator Model 683 Harvard Apparatus    
      Table 1. Table of specific reagents and equipment.

  1. Weibel, E. R. Early stages in the development of collateral circulation to the lung in the rat. Circulation Research. 8, 353-376 (1960).
  2. Li, X., Wilson, J. W. Increased vascularity of the bronchial mucosa in mild asthma. Am. J. Respir. Crit. Care Med. 156, 229-233 (1997).
  3. Turner-Warwick, M. Precapillary systemic-pulmonary anastomoses. Thorax. 18, 225-237 (1963).
  4. Muller, K. M., Meyer-Schwickerath, M. Bronchial arteries in various stages of bronchogenic carcinoma. Pathol. Res. Pract. 163, 34-46 (1978).
  5. Remy-Jardin, M., Duhamel, A., et al. Systemic Collateral Supply in Patients with Chronic Thromboembolic and Primary Pulmonary Hypertension: Assessment with Multi-Detector Row Helical CT Angiography. Radiology. , 274-281 (2005).
  6. Karsner, H., Ghoreyeb, A. Studies in infarction: The circulation in experimental pulmonary embolism. J. Exp. Med. 18, 507-522 (1913).
  7. Endrys, J., Hayat, N., et al. Comparison of bronchopulmonary collaterals and collateral blood flow in patients with chronic thromboembolic and primary pulmonary hypertension. Heart. 78, 171-176 (1997).
  8. Virchow, V. Uber die Standpunkte in den Wissenschaftlichen Medizin. Virchow Archiv. 1, 1-19 .
  9. Fadel, E., Mazmanian, G. M., et al. Lung reperfusion injury after chronic or acute unilateral pulmonary artery occlusion. Am. J. Respir. Crit. Care Med. 157, 1294-1230 (1998).
  10. Charan, N. B., Carvalho, P. Angiogenesis in bronchial circulatory system after unilateral pulmonary artery obstruction. J. Appl. Physiol. 82, 284-291 (1997).
  11. Shi, W., Hu, F., et al. Altered reactivity of pulmonary vessels in postobstructive pulmonary vasculopathy. J. Appl. Physiol. 88, 17-25 (2000).
  12. Shi, W., Giaid, A., et al. Increased reactivity to endothelin of pulmonary arteries in long-term post-obstructive pulmonary vasculopathy in rats. Pulm. Pharmacol. Ther. 11, 189-196 (1998).
  13. Sukkar, A., Jenkins, J., et al. Inhibition of CXCR2 Attenuates Bronchial Angiogenesis in the Ischemic Rat Lung. J. Appl. Physiol. 104, 1470-1475 (2008).
  14. Mitzner, W., Lee, W., et al. Angiogenesis in the mouse lung. Am. J. Pathol. 157, 93-101 (2000).
  15. Wagner, E. M., Jenkins, J., et al. Lung and vascular function during chronic severe pulmonary ischemia. J. Appl. Physiol. 110, 538-544 (2011).
  16. Remy-Jardin, M., Bouaziz, N., et al. Bronchial and nonbronchial systemic arteries at multi-detector row CT angiography: comparison with conventional angiography. Radiology. 233, 741-749 (2004).
  17. Baluk, P., Tammela, T., et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247-257 (2005).
  18. Bailey, S. R., Boustany, S., et al. Airway vascular reactivity and vascularisation in human chronic airway disease. Pulm. Pharmacol. Ther. 22, 417-425 (2009).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved