A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Reconstituting functional membrane proteins into giant liposomes of defined composition is a powerful approach when combined with patch-clamp electrophysiology. However, conventional giant liposome production may be incompatible with protein stability. We describe protocols for producing giant liposomes from pure lipids or small liposomes containing ion channels.
The reconstitution of ion channels into chemically defined lipid membranes for electrophysiological recording has been a powerful technique to identify and explore the function of these important proteins. However, classical preparations, such as planar bilayers, limit the manipulations and experiments that can be performed on the reconstituted channel and its membrane environment. The more cell-like structure of giant liposomes permits traditional patch-clamp experiments without sacrificing control of the lipid environment.
Electroformation is an efficient mean to produce giant liposomes >10 μm in diameter which relies on the application of alternating voltage to a thin, ordered lipid film deposited on an electrode surface. However, since the classical protocol calls for the lipids to be deposited from organic solvents, it is not compatible with less robust membrane proteins like ion channels and must be modified. Recently, protocols have been developed to electroform giant liposomes from partially dehydrated small liposomes, which we have adapted to protein-containing liposomes in our laboratory.
We present here the background, equipment, techniques, and pitfalls of electroformation of giant liposomes from small liposome dispersions. We begin with the classic protocol, which should be mastered first before attempting the more challenging protocols that follow. We demonstrate the process of controlled partial dehydration of small liposomes using vapor equilibrium with saturated salt solutions. Finally, we demonstrate the process of electroformation itself. We will describe simple, inexpensive equipment that can be made in-house to produce high-quality liposomes, and describe visual inspection of the preparation at each stage to ensure the best results.
Giant liposomes (often called giant unilamellar vesicles, or GUVs) have primarily been used to study the physics and physical chemistry of lipid bilayers, including studies of bilayer deformation, lateral phase coexistence ("rafts"), membrane fusion, etc1-4. They have a grossly cell-like structure: spherical shell of membrane surrounding an aqueous interior which can easily be made different than the surrounding aqueous buffer. They are, by definition, ≈1-100 μm in diameter, so they can be imaged using a variety of light microscopy approaches. They can be made taut using osmotic gradients or mechanically applied tension, so that while generally soft, their properties can be manipulated for easy handling. In particular, controlling the "stiffness" of the liposome makes it straightforward to form "liposome-attached" or excised patches for electrophysiology. In the past, ion channel reconstitution was largely performed in planar lipid bilayers. Now, the ability to form patches from giant liposomes and use the considerable quiver of tools developed for conventional electrophysiology (fluorescence microscopy, micropipette aspiration, rapid perfusion and temperature control, etc.) makes giant liposomes increasingly attractive for reconstitution studies5,6.
Giant liposomes have been made by many strategies. In fact, giant liposomes form spontaneously by a swelling process when a dried lipid film is rehydrated4,7,8. The desire to more rapidly prepare larger, more uniform liposomes led researchers to other approaches, chief among them electroformation1,9. Electroformation also relies on hydration of a dried lipid film, but speeds the process through the application of an oscillating electric field across the lipid film. The field is applied through two electrodes, either platinum wires or Indium-Tin-Oxide (ITO) coated glass slides, separated by water or buffer and onto which the lipids are deposited. By speeding the swelling of liposomes, one achieves a higher yield of larger liposomes. Thus, electroformation has become the default method to produce giant liposomes4.
The mechanism of electroformation is not fully understood, and most of the protocols are developed empirically (e.g. 10,11). Nonetheless, we can learn a little about what to expect by considering the theory and some empirical results. It is widely believed that electroformation occurs by driving electro-osmotic flow of buffer between individual lipid bilayers stacked in the deposited lipid film10,11. Electrostatic coupling to thermal fluctuations of the lipid bilayers is probably also involved12. These hypotheses qualitatively predict upper limits for the electric field frequency and strength that can be used10,12. In particular, it is predicted that high conductivity solutions (i.e. physiological salt solutions) reduce the electrohydrodynamic forces that may initiate the liposome electroformation12. Electroosmotic flow rates generally decrease with increasing salt concentration and are frequently peaked at some electric field oscillation frequency (e.g. albeit in a different geometry, Green et al.13). Thus, higher field strengths and higher frequencies are reasonable for high conductivity solutions, within limits10.
However, membrane proteins are likely to be incompatible with the usual method of depositing lipids onto electrodes for the electroswelling procedure, namely in organic solvents which are then evaporated off to leave a thin lipid film. There are two principal paths around this difficulty: to incorporate proteins after giant liposome formation, or to adapt how the lipids are deposited. Our approach builds on others5,11 to deposit the lipids and reconstituted membrane protein together from a suspension of small or large "proteoliposomes". We describe the lengthy and more challenging process of producing proteoliposomes from purified protein and lipids elsewhere (Collins and Gordon, in review). Here we describe the protocol in the absence of any protein, but it is the same when protein is incorporated; we include results showing that proteoliposomes containing the ion channel TRPV1 can be transformed into GUVs and used for patch-clamp electrophysiology. In any electroformation approach, visual inspection of the lipid sample during the lipid deposition process is critical to success.
Our approach may be relevant beyond the specialized application to ion channel reconstitution. In the time since we first developed this protocol and now, it has also been shown how the way in which lipids are deposited on electrodes for electroformation affects the compositional heterogeneity of the resulting GUVs. Baykal-Caglar et al.14 showed that GUVs formed from carefully dehydrated liposomes had a 2.5 times smaller variation in the miscibility transition temperature of GUVs formed from mixtures of various phospholipids and cholesterol. Their work indicates that lipids, and especially cholesterol, may precipitate from the lipid mixture when deposited from organic solvents, resulting in large spatial variation in composition of the deposited lipid film. This is especially important for studies of lipid membrane phase behavior, but may also be critical to quantitative experiments on ion channel function. Baykal-Caglar et al.'s protocol is similar but not identical to our own, and readers are encouraged to study it as well.
This protocol (see overview, Figure 1) is one of many that could be used. In principle electroformation success depends on the lipid mixture, hydration, temperature, other solutes (especially ions), and of course the voltage and frequency used in formation. As electroformation becomes better understood, we expect to refine our protocol more.
Finally, there is often a steep learning curve in electroforming giant liposomes. We suggest mastering the conventional protocol (Sections 1 and 4, and, if necessary, Section 5) before learning to deposit lipids from liposomal suspensions (Sections 2-5).
1. Deposition of Lipids from Organic Solvents: Classical Protocol
2. Small Liposome Preparation for Controlled Dehydration
3. Deposition of Lipids by Controlled Dehydration of Small Liposomes
4. Electroformation of Giant Liposomes
5. Imaging and Troubleshooting
In our examples, we prepare liposomes from a mixture of approximately 55 mol% POPC (1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine), 15 mol% POPS (1-palmitoyl-2-oleoyl-sn-glycero-phosphoserine, 30 mol% cholesterol, and 0.1 mol% Texas Red-labeled 1,2-dipalmitoyl-sn-phosphoethanolamine (TxR-DPPE). This composition was chosen as approximately representative of dorsal root ganglion lipids18. We note that 15 mol% charged lipid (here POPS) is near the limit of what can be used in electrofo...
Electroformation of giant liposomes has developed into a flexible technique compatible with diverse lipids, preparations, and buffers. Careful control of the lipid deposition process is most critical to success. We have presented simple tools to make controlled deposition of lipids from small liposome preparations a straightforward process. The relative humidity is critical to proper dehydration of the initial liposomes, and the optimum value will vary with the initial concentration of solutes in the liposome suspension....
The authors declare that they have no competing financial interests.
We thank Bryan Venema and Eric Martinson for constructing the electroformation apparatus. This work was funded by grants from the National Institutes of General Medical Sciences of the National Institutes of Health (R01GM100718 to SEG) and the National Eye Institute of the National Institutes of Health (R01EY017564 to SEG).
Name | Company | Catalog Number | Comments |
Digital Multimeter | Agilent Technologies, www.agilent.com | U1232A or similar | Any multimeter will do, but avoid old style analog ohmmeters which apply much more current to the resistance under test. |
Fluke | 117 or 177 | Any multimeter will do, but avoid old style analog ohmmeters which apply much more current to the resistance under test. | |
Function Generator | Agilent Technologies, www.agilent.com | 33210A or similar | Most function generators work for simple protocols. This programmable model is useful for advanced electroformation protocols. Make sure the generator can drive 10 V peak-to-peak into a 50 Ω load |
ITO coated glass slides | Delta Technologies, Loveland, CO www.delta-technologies.com | CB-90IN-S107 or similar | Break these in half to make two slides, 25 mm x 37 mm |
Temperature controller | Omega Engineering Stamford, CT www.omega.com | CNi3233 or similar | |
Hygrometer | Extech, Nashua, NH, www.extech.com | 445815 | |
Silicone rubber sheet | McMaster-Carr Elmhurst, IL www.mcmaster.com | 87315K64 | Use USP Grade VI silicone for its high purity |
EMI gasket | Laird Technologies www.lairdtech.com | 4202-PA-51H-01800 or similar | Distributed by Mouser www.mouser.com |
TxR-DHPE | Life Technologies, Carlsbad, CA www.lifetechnologies.com | T1395MP | Other fluorescently labeled lipids are available, but TxR-DHPE is one of the brightest and most photostable. |
POPC | Avanti Polar Lipids, Alabaster, AL www.avantilipids.com | 850457P or 850457C | Lipids can be ordered as powders (P) or in chloroform (C) |
POPS | Avanti Polar Lipids | 840034P/C | |
Cholesterol | Sigma-Aldrich | C8667 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved