JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Development of an Audio-based Virtual Gaming Environment to Assist with Navigation Skills in the Blind

Published: March 27th, 2013

DOI:

10.3791/50272

1Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 2Department of Computer Science and Center for Advanced Research in Education (CARE), University of Chile

Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind.

Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind. Using only audio based cues and set within the context of a video game metaphor, users gather relevant spatial information regarding a building's layout. This allows the user to develop an accurate spatial cognitive map of a large-scale three-dimensional space that can be manipulated for the purposes of a real indoor navigation task. After game play, participants are then assessed on their ability to navigate within the target physical building represented in the game. Preliminary results suggest that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building as indexed by their performance on a series of navigation tasks. These tasks included path finding through the virtual and physical building, as well as a series of drop off tasks. We find that the immersive and highly interactive nature of the AbES software appears to greatly engage the blind user to actively explore the virtual environment. Applications of this approach may extend to larger populations of visually impaired individuals.

Finding one's way in an unfamiliar environment presents as a significant challenge for the blind. Navigating successfully requires an understanding of the spatial relationships that exist between one's self and objects in the environment1,2. The mental representation that describes surrounding space is referred to as a spatial cognitive map3. Blind individuals can gather relevant spatial information regarding their surrounding environment through other sensory channels (such as hearing) allowing for the generation of an accurate spatial cognitive map for the purposes of real world navigation tasks4,5.

Consi....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Participant Demographics

This is an on-going study that recruits blind male and female participants aged between 18-45 years. All participants are legally blind of early onset (documented prior to the age of 3) and of varying ocular etiologies. None of the study participants were previously familiar with the spatial layout of the target physical building.

2. Preparation and Familiarization with AbES

  1. Provide the participant with a blindfold and headphon.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results from three early blind participants (aged between 19 and 22 years) are shown (see Table 1 for participant characteristics). In summary, all three participants showed a high level of success on all three navigation tasks following game play with the AbES software. This was confirmed by the performance scores (group mean and individual) on all three behavioral tasks (see Figure 6). The percentage correct performance for the virtual (mean: 90%) followed by the physical (mean: 88.7%).......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We describe an interactive audio-based virtual environment simulator designed to improve general spatial awareness and navigation skills in the blind. We demonstrate that interacting with AbES provides accurate cues that describe the spatial relationships between objects and the overall layout of the target environment. Blind users can generate accurate spatial cognitive maps based on this auditory information and by interacting with the immersive virtual environment. Furthermore, interacting with AbES within the context.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Rabih Dow, Padma Rajagopal, Molly Connors and the staff of the Carroll Center for the Blind (Newton MA, USA) for their support in carrying out this research. This work was supported by the NIH/NEI grant: RO1 EY019924.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of Equipment Comments
Laptop computer Laptop used exclusively for training participants and collecting data
Stereo Head phones (fully enclosed circumaural design) Worn by all participants during training
Blindfold Worn by all participants during training and testing

  1. Loomis, J. M., Klatzky, R. L., Golledge, R. G. Navigating without vision: basic and applied research. Optom. Vis. Sci. 78, 282-289 (2001).
  2. Siegel, A. W., White, S. H. The development of spatial representations of large-scale environments. Adv. Child Dev. Behav. 10, 9-55 (1975).
  3. Strelow, E. R. What is needed for a theory of mobility: direct perception and cognitive maps--lessons from the blind. Psychol. Rev. 92, 226-248 (1985).
  4. Giudice, N. A., Bakdash, J. Z., Legge, G. E. Wayfinding with words: spatial learning and navigation using dynamically updated verbal descriptions. Psychol. Res. 71, 347-358 (2007).
  5. Ashmead, D. H., Hill, E. W., Talor, C. R. Obstacle perception by congenitally blind children. Percept. Psychophys. 46, 425-433 (1989).
  6. Dede, C. Immersive interfaces for engagement and learning. Science. 323, 66-69 (2009).
  7. Bavelier, D., et al. Brains on video games. Nat. Rev. Neurosci. 12, 763-768 (2011).
  8. Bavelier, D., Green, C. S., Dye, M. W. Children, wired: for better and for worse. Neuron. 67, 692-701 (2010).
  9. Lange, B., et al. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil. Rehabil. , (2012).
  10. Merabet, L., Sánchez, J. Audio-based Navigation Using Virtual Environments: Combining Technology and Neuroscience. AER Journal: Research and Practice in Visual Impairment and Blindness. 2, 128-137 (2009).
  11. Kalia, A. A., Legge, G. E., Roy, R., Ogale, A. Assessment of Indoor Route-finding Technology for People with Visual Impairment. J. Vis. Impair. Blind. 104, 135-147 (2010).
  12. Lahav, O., Schloerb, D. W., Srinivasan, M. A. Newly blind persons using virtual environment system in a traditional orientation and mobility rehabilitation program: a case study. Disabil. Rehabil. Assist Technol. , (2011).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved