JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Culturing Primary Rat Inner Medullary Collecting Duct Cells

Published: June 21st, 2013

DOI:

10.3791/50366

1Anchored Signalling, Max-Delbrück-Center for Molecular Medicine, 2Leibniz Institute for Molecular Pharmacology (FMP), 3Charité University Medicine Berlin

ERRATUM NOTICE

Important: There has been an erratum issued for this article. Read more …

Arginine-vasopressin (AVP) controls fine-tuning of body water homeostasis through facilitating water reabsorption by renal principal cells. Here, we present a protocol for the cultivation of primary rat inner medullary collecting duct cells suitable for the elucidation of molecular mechanisms underlying AVP-mediated water reabsorption.

Arginine-vasopressin (AVP) facilitates water reabsorption by renal collecting duct principal cells and thereby fine-tunes body water homeostasis. AVP binds to vasopressin V2 receptors (V2R) on the surface of the cells and thereby induces synthesis of cAMP. This stimulates cellular signaling processes leading to changes in the phosphorylation of the water channel aquaporin-2 (AQP2). Protein kinase A phoshorylates AQP2 and thereby triggers the translocation of AQP2 from intracellular vesicles into the plasma membrane facilitating water reabsorption from primary urine. Aberrations of AVP release from the pituitary or AVP-activated signaling in principal cells can cause central or nephrogenic diabetes insipidus, respectively; an elevated blood plasma AVP level is associated with cardiovascular diseases such as chronic heart failure and the syndrome of inappropriate antidiuretic hormone secretion.

Here, we present a protocol for cultivation of primary rat inner medullary collecting duct (IMCD) cells, which express V2R and AQP2 endogenously. The cells are suitable for elucidating molecular mechanisms underlying the control of AQP2 and thus to discover novel drug targets for the treatment of diseases associated with dysregulation of AVP-mediated water reabsorption. IMCD cells are obtained from rat renal inner medullae and are used for experiments six to eight days after seeding. IMCD cells can be cultured in regular cell culture dishes, flasks and micro-titer plates of different formats, the procedure only requires a few hours, and is appropriate for standard cell culture laboratories.

In renal collecting duct principal cells, arginine-vasopressin (AVP) controls water reabsorption by stimulating the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane. AVP binds to the G protein-coupled vasopressin type-2 receptor (V2R) stimulating adenylyl cyclase and thereby cAMP formation. Initiation of this signaling cascade leads to activation of protein kinase A (PKA). PKA phosphorylates AQP2 at serine 256 (S256), which is the key trigger for its redistribution from intracellular vesicles into the plasma membrane. The membrane insertion facilitates water reabsorption along an osmotic gradient and fine-tunes body water homeostasis.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparation

  1. Preparing the culture dishes
    1. Thaw Collagen Type IV O/N at 4 °C and dissolve it in 0.1% sterile acetic acid. The volume to use depends on the type and number of dishes in which the cells are to be seeded. Use 2 μg/cm2.
    2. Incubate dishes at least for 1 hr at RT and wash twice with distilled water (A. tridest).
    3. Allow the dishes to dry properly.
  2. Supplementation of medium
    1. Increase the glucose level up to 4.5 g/L by.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The successful cultivation of primary rat IMCD cells will result in a confluent monolayer 6-8 days after seeding (Figure 2). Per 60 mm culture dish there are approximately 6 x 106 cells. The cells tightly adhere to the culture dishes, as these were coated with collagen type IV, a basement membrane component18. Therefore, IMCD cells will not detach even during several thorough washing procedures. Up to 80% of the cultured cells express endogenously V2R and AQP2. These are the princip.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We present a detailed protocol for the preparation and culturing of primary rat IMCD cells. The approach yields up to 21 cm2 of cells from one rat20. The experiment requires standard cell culture equipment and can be carried out by a single person within approximately 6 hr. Therefore, this approach is suitable as a standard laboratory method.

Primary rat IMCD cells can be seeded in culture dishes of different size, ranging from 96 well plates to 60 mm dishes. However, for.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the Deutsche Forschungsgemeinschaft (DFG; KL 1415/3-2 and KL 1415/4-2).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name Company Catalog Number
Collagen Type IV Mouse BD Biosciences 356233
Hyaluronidase SIGMA H6254
Collagenase type CLS-II Biochrom AG C2-22
DMEM + GlutMAX Invitrogen GIBCO 21885108
Nystatin SIGMA N4014
Ultroser G Cytogen 15950-017
Non essential amino acids (NEA) Biochrom AG K0293
Gentamicin Invitrogen GIBCO 15710
DBcAMP BIOLOG D009

  1. Stoos, B. A., Naray-Fejes-Toth, A., Carretero, O. A., Ito, S., Fejes-Toth, G. Characterization of a mouse cortical collecting duct cell line. Kidney International. 39, 1168-1175 (1991).
  2. Graham, F. L., Smiley, J., Russell, W. C., Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. The Journal of general virology. 36, 59-74 (1977).
  3. Gluzman, Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 23, 175-182 (1981).
  4. Ala, Y., et al. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. Journal of the American Society of Nephrology: JASN. 9, 1861-1872 (1998).
  5. Richardson, J. C., Scalera, V., Simmons, N. L. Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochimica et Biophysica Acta. 673, 26-36 (1981).
  6. Chen, Y., et al. Aquaporin 2 Promotes Cell Migration and Epithelial Morphogenesis. Journal of the American Society of Nephrology: JASN. , (2012).
  7. Perantoni, A., Berman, J. J. Properties of Wilms' tumor line (TuWi) and pig kidney line (LLC-PK1) typical of normal kidney tubular epithelium. In vitro. 15, 446-454 (1979).
  8. Katsura, T., et al. Constitutive and regulated membrane expression of aquaporin 1 and aquaporin 2 water channels in stably transfected LLC-PK1 epithelial cells. Proceedings of the National Academy of Sciences of the United States of America. 92, 7212-7216 (1995).
  9. Hull, R. N., Cherry, W. R., Weaver, G. W. The origin and characteristics of a pig kidney cell strain, LLC-PK. In vitro. 12, 670-677 (1976).
  10. Nedvetsky, P. I., et al. Reciprocal regulation of aquaporin-2 abundance and degradation by protein kinase A and p38-MAP kinase. J. Am. Soc. Nephrol. 21, 1645-1656 (2010).
  11. Iolascon, A., et al. Characterization of Two Novel Missense Mutations in the AQP2 Gene Causing Nephrogenic Diabetes Insipidus. Nephron Physiology. 105, p33-p41 (2007).
  12. Deen, P. M., et al. Aquaporin-2 transfection of Madin-Darby canine kidney cells reconstitutes vasopressin-regulated transcellular osmotic water transport. Journal of the American Society of Nephrology: JASN. 8, 1493-1501 (1997).
  13. Valenti, G., Frigeri, A., Ronco, P. M., D'Ettorre, C., Svelto, M. Expression and functional analysis of water channels in a stably AQP2-transfected human collecting duct cell line. The Journal of Biological Chemistry. 271, 24365-24370 (1996).
  14. Steele, S. L., et al. Telomerase immortalization of principal cells from mouse collecting duct. American Journal of Physiology. Renal Physiology. 299, F1507-F1514 (2010).
  15. Bens, M., et al. Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. Journal of the American Society of Nephrology: JASN. 10, 923-934 (1999).
  16. Hasler, U., et al. Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. The Journal of Biological Chemistry. 277, 10379-10386 (1074).
  17. Miller, R. L., Sandoval, P. C., Pisitkun, T., Knepper, M. A., Hoffert, J. D. Vasopressin inhibits apoptosis in renal collecting duct cells. American Journal of Physiology. Renal Physiology. , (2012).
  18. Kleinman, H. K., et al. Basement membrane complexes with biological activity. Biochemistry. 25, 312-318 (1986).
  19. Storm, R., Klussmann, E., Geelhaar, A., Rosenthal, W., Maric, K. Osmolality and solute composition are strong regulators of AQP2 expression in renal principal cells. American Journal of Physiology. Renal Physiology. 284, 189-198 (2003).
  20. Maric, K., Oksche, A., Rosenthal, W. Aquaporin-2 expression in primary cultured rat inner medullary collecting duct cells. Am. J. Physiol. 275, 796-801 (1998).
  21. Liebenhoff, U., Rosenthal, W. Identification of Rab3-, Rab5a- and synaptobrevin II-like proteins in a preparation of rat kidney vesicles containing the vasopressin-regulated water channel. FEBS Lett. 365, 209-213 (1995).
  22. Lorenz, D., et al. Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep. 4, 88-93 (2003).
  23. Tamma, G., et al. The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J. Cell Sci. 116, 3285-3294 (2003).
  24. Maric, K., et al. Cell volume kinetics of adherent epithelial cells measured by laser scanning reflection microscopy: determination of water permeability changes of renal principal cells. Biophys. J. 80, 1783-1790 (2001).
  25. Gonzalez, A. A., et al. Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity. Hypertension. 57, 594-599 (2011).
  26. Chou, C. L., et al. Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. The Journal of Biological Chemistry. 275, 36839-36846 (2000).
  27. Uawithya, P., Pisitkun, T., Ruttenberg, B. E., Knepper, M. A. Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiological Genomics. 32, 229-253 (2008).
  28. Tchapyjnikov, D. Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC-MS/MS. Physiological Genomics. 40, 167-183 (2010).
  29. Stefan, E., et al. Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J. Am. Soc. Nephrol. 18, 199-212 (2007).
  30. Klussmann, E., et al. An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J. Biol. Chem. 276, 20451-20457 (2001).

Erratum

Erratum: Culturing Primary Rat Inner Medullary Collecting Duct Cells

A correction was made to Culturing Primary Rat Inner Medullary Collecting Duct Cells. There was an error with an author's name. The author's last name had a typo and was corrected to:

Enno Klussmann

instead of:

Enno Klussman

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved