JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Fetal Echocardiography and Pulsed-wave Doppler Ultrasound in a Rabbit Model of Intrauterine Growth Restriction

Published: June 29th, 2013

DOI:

10.3791/50392

1Division Woman and Child, Department Women, University Hospitals Leuven, 2The Ritchie Centre, Monash Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia, 3Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 4Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 5Maternal-Fetal Medicine Department, ICGON, Hospital Clínic, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)

We describe examination of fetal cardiac function with contemporary functional fetal echocardiography and fetoplacental Doppler ultrasound using the VisualSonics VEVO 2100 microultrasound in a surgically induced model of intrauterine fetal growth restriction in a rabbit.

Fetal intrauterine growth restriction (IUGR) results in abnormal cardiac function that is apparent antenatally due to advances in fetoplacental Doppler ultrasound and fetal echocardiography. Increasingly, these imaging modalities are being employed clinically to examine cardiac function and assess wellbeing in utero, thereby guiding timing of birth decisions. Here, we used a rabbit model of IUGR that allows analysis of cardiac function in a clinically relevant way. Using isoflurane induced anesthesia, IUGR is surgically created at gestational age day 25 by performing a laparotomy, exposing the bicornuate uterus and then ligating 40-50% of uteroplacental vessels supplying each gestational sac in a single uterine horn. The other horn in the rabbit bicornuate uterus serves as internal control fetuses. Then, after recovery at gestational age day 30 (full term), the same rabbit undergoes examination of fetal cardiac function. Anesthesia is induced with ketamine and xylazine intramuscularly, then maintained by a continuous intravenous infusion of ketamine and xylazine to minimize iatrogenic effects on fetal cardiac function. A repeat laparotomy is performed to expose each gestational sac and a microultrasound examination (VisualSonics VEVO 2100) of fetal cardiac function is performed. Placental insufficiency is evident by a raised pulsatility index or an absent or reversed end diastolic flow of the umbilical artery Doppler waveform. The ductus venosus and middle cerebral artery Doppler is then examined. Fetal echocardiography is performed by recording B mode, M mode and flow velocity waveforms in lateral and apical views. Offline calculations determine standard M-mode cardiac variables, tricuspid and mitral annular plane systolic excursion, speckle tracking and strain analysis, modified myocardial performance index and vascular flow velocity waveforms of interest. This small animal model of IUGR therefore affords examination of in utero cardiac function that is consistent with current clinical practice and is therefore useful in a translational research setting.

The burden of cardiovascular disease that results from fetal intrauterine growth restriction (IUGR) cannot be overstated. It is the leading cause of stillbirth after congenital abnormalities.1 IUGR refers to a fetus that fails to reach its growth potential and is commonly a result of placental insufficiency.2 In survivors, cardiovascular ill health is evident across the life span with myocardial dysfunction apparent in infancy and childhood3,4 and subsequent hypertension5, diabetes6, and obesity developing in adult life - all cumulative cardiac risk factors from birth towards premature death from ischemic heart di....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The following experimental protocol is approved by the Animal Ethics Committee, Katholieke Universiteit Leuven, Leuven, Belgium. We followed previously described surgical procedure13 including some methodological changes, especially in anesthesia procedure.

1. Inducing Intrauterine Growth Restriction (IUGR)

  1. Time dated pregnant rabbits (hybrid Dendermonde and New Zealand White) are housed in individual cages on a 12/12 hr light schedule with access to water and standard r.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

An asymmetrical growth restricted fetus and placenta from uteroplacental vascular ligation is compared to a normal control fetus and placenta in Figure 1F. Asymmetrical growth is confirmed by reduced neonatal birth weight and increased head circumference:abdominal circumference ratio to controls. Representative results from fetoplacental Doppler studies are shown in Figure 2. A normal low resistance pattern of positive end-diastolic flow in a control fetus is shown. With progressive incr.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We have used a previously validated approach of surgically reducing uteroplacental blood flow in a rabbit to produce IUGR13-16 and later examining fetal cardiac function14 to describe microultrasound technology and cardiac function analysis available on the VisualSonics VEVO 2100. The ability to reproduce fetoplacental Doppler changes of human IUGR fetuses in a small animal model and to then allow examination of cardiac function with recently described echocardiography is likely to progress fetal ca.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work is supported by a Hamilton-Fairley NHMRC Fellowship (RH, AL); the Victorian Government's Operational Infrastructure Support Program (RH, EW) and the Marie Curie Industria-Academia Partnership and Pathways grant sponsored by the European Commission (ME, PD). The authors would like to thank Dr. Andre Miyague, Dr. Francesca Russo, Ms. Rosita Kinnart and Mr. Ivan Laermans for their technical expertise in producing this video.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of Reagent/Material Company Catalog Number Comments
Ketamine Ceva Sante Animale http://www.ceva.com/en
Xylazine Ceva Sante Animale http://www.ceva.com/en
Depot Provera Pharmacia Upjohn
Penicillin G Kela Pharma http://www.kela.be
Lidocaine B Braun Medical http://www.bbraun.com/
Temgesic Schering-Plough http://www.merck-animal-health-usa.com/
Isolurane Isoba Vet; Abbott Laboratories Ltd http://www.abbottanimalhealth.com/index.html
Ethicon Johnson and Johnson http://www.ethiconproducts.co.uk/products/sutures
Ethicon Johnson and Johnson http://www.ethiconproducts.co.uk/products/sutures
Ethicon Johnson and Johnson http://www.ethiconproducts.co.uk/products/sutures
VEVO 2100 VisualSonics SN100-0032 http://www.visualsonics.com/
Aquasonic Gel Parker Laboratories 01 02 http://www.parkerlabs.com/ultrasound_products.html
Nellcor N-20PA Pulse oximeter Covidien http://www.nellcor.com/prod/PRODUCT.ASPX?S1=POX&S2=MON&id=282&V

  1. Bukowski, R. Stillbirth and fetal growth restriction. Clin. Obstet. Gynecol. 53 (3), 673-680 (2010).
  2. American College of Obstetricians and Gynecologists. Intrauterine growth restriction. ACOG practice bulletin no. 12. 12, (2000).
  3. Crispi, F., Bijnens, B., et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation. 121 (22), 2427-2436 (2010).
  4. Cosmi, E., Visentin, S., Fanelli, T., Mautone, A. J., Zanardo, V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet. Gynecol. 114 (5), 1109-1114 (2009).
  5. Ojeda, N. B., Grigore, D., Alexander, B. T. Intrauterine growth restriction: fetal programming of hypertension and kidney disease. Adv. Chronic Kidney Dis. 15 (2), 101-106 (2008).
  6. Stocker, C. J., Arch, J. R., Cawthorne, M. A. Fetal origins of insulin resistance and obesity. Proc. Nutr. Soc. 64 (2), 143-151 (2005).
  7. Barker, D. J. Intrauterine programming of coronary heart disease and stroke. Acta Paediatr. Suppl. 423, 178-182 (1997).
  8. Anthony, R. V., Scheaffer, A. N., Wright, C. D., Regnault, T. R. Ruminant models of prenatal growth restriction. Reprod. Suppl. 61, 183-194 (2003).
  9. Woods, L. L., Weeks, D. A., Rasch, R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int. 65 (4), 1339-1348 (2004).
  10. Turner, A. J., Trudinger, B. J. A modification of the uterine artery restriction technique in the guinea pig fetus produces asymmetrical ultrasound growth. Placenta. 30 (3), 236-2340 (2009).
  11. Miller, S. L., Supramaniam, V. G., Jenkin, G., Walker, D., W, E. M., Wallace, Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. Am. J. Obstet. Gynecol. 201 (6), 613.e1-613.e8 (2009).
  12. Barry, J. S., Rozance, P. J., Anthony, R. V. An animal model of placental insufficiency-induced intrauterine growth restriction. Semin. Perinatol. 32 (3), 225-2230 (2008).
  13. Eixarch, E., Figueras, F., et al. An experimental model of fetal growth restriction based on selective ligature of uteroplacental vessels in the pregnant rabbit. Fetal Diagn. Ther. 26 (4), 203-211 (2009).
  14. Eixarch, E., Hernandez-Andrade, E., et al. Impact on fetal mortality and cardiovascular Doppler of selective ligature of uteroplacental vessels compared with undernutrition in a rabbit model of intrauterine growth restriction. Placenta. 32 (4), 304-309 (2011).
  15. Eixarch, E., Batalle, D., et al. Neonatal neurobehavior and diffusion MRI changes in brain reorganization due to intrauterine growth restriction in a rabbit model. PLoS One. 7 (2), e31497 (2012).
  16. Figueroa, H., Lozano, M., et al. Intrauterine growth restriction modifies the normal gene expression in kidney from rabbit fetuses. Early Hum. Dev. , (2012).
  17. Alfirevic, Z., Stampalija, T., Gyte, G. M. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst. Rev. (1), CD007529 (2010).
  18. Baschat, A. A. Examination of the fetal cardiovascular system. Semin. Fetal Neonatal. Med. 16 (1), 2-12 (2011).
  19. Rychik, J., Ayres, N., et al. American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. J. Am. Soc. Echocardiogr. 17 (7), 803-810 (2004).
  20. Gnyawali, S. C., Roy, S., Driggs, J., Khanna, S., Ryan, T., Sen, C. K. High-frequency high-resolution echocardiography: first evidence on non-invasive repeated measure of myocardial strain, contractility, and mitral regurgitation in the ischemia-reperfused murine heart. J. Vis. Exp. (41), e1781 (2010).
  21. Forfia, P. R., Fisher, M. R., et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 174 (9), 1034-1041 (2006).
  22. Matos, J., Kronzon, I., Panagopoulos, G., Perk, G. Mitral annular plane systolic excursion as a surrogate for left ventricular ejection fraction. J. Am. Soc. Echocardiogr. 25 (9), 969-974 (2012).
  23. Cruz-Martinez, R., Figueras, F., et al. Normal reference ranges from 11 to 41 weeks' gestation of fetal left modified myocardial performance index by conventional Doppler with the use of stringent criteria for delimitation of the time periods. Fetal Diagn. Ther. 32 (1-2), 79-86 (2012).
  24. Edwards, A., Baker, L. S., Wallace, E. M. Changes in umbilical artery flow velocity waveforms following maternal administration of betamethasone. Placenta. 24 (1), 12-16 (2003).
  25. Edwards, A., Baker, L. S., Wallace, E. M. Changes in fetoplacental vessel flow velocity waveforms following maternal administration of betamethasone. Ultrasound Obstet. Gynecol. 20 (3), 240-244 (2002).
  26. Neitzke, U., Harder, T., et al. Intrauterine growth restriction in a rodent model and developmental programming of the metabolic syndrome: a critical appraisal of the experimental evidence. Placenta. 29 (3), 246-254 (2008).
  27. Neitzke, U., Harder, T., Plagemann, A. Intrauterine growth restriction and developmental programming of the metabolic syndrome: a critical appraisal. Microcirculation. 18 (4), 304-311 (2011).
  28. Maulik, D., Mundy, D., Heitmann, E. Evidence-based approach to umbilical artery Doppler fetal surveillance in high-risk pregnancies: an update. Clin. Obstet. Gynecol. 53 (4), 869-878 (2010).
  29. Morrow, R. J., Adamson, S. L., Bull, S. B., Ritchie, J. W. Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am. J. Obstet. Gynecol. 161 (4), 055-60 (1989).
  30. Kingdom, J. C., Burrell, S. J., Kaufmann, P. Pathology and clinical implications of abnormal umbilical artery Doppler waveforms. Ultrasound Obstet. Gynecol. 9 (4), 271-286 (1997).
  31. Van Mieghem, T., DeKoninck, P., Steenhaut, P., Deprest, J. Methods for prenatal assessment of fetal cardiac function. Prenat. Diagn. 29 (13), 1193-1203 (2009).
  32. Van Mieghem, T., Giusca, S., et al. Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome. J. Am. Soc. Echocardiogr. 23 (3), 301-308 (2010).
  33. Cruz-Martinez, R., Figueras, F., Hernandez-Andrade, E., Oros, D., Gratacos, E. Changes in myocardial performance index and aortic isthmus and ductus venosus Doppler in term, small-for-gestational age fetuses with normal umbilical artery pulsatility index. Ultrasound Obstet. Gynecol. 38 (4), 400-405 (2011).
  34. Comas, M., Crispi, F., Cruz-Martinez, R., Figueras, F., Gratacos, E. Tissue Doppler echocardiographic markers of cardiac dysfunction in small-for-gestational age fetuses. Am. J. Obstet. Gynecol. 205 (1), 57.e1-57.e6 (2011).
  35. Baschat, A. A. Venous Doppler evaluation of the growth-restricted fetus. Clin. Perinatol. 38 (1), 103-112 (2011).
  36. Hodges, R. J., Wallace, E. M. Mending a growth-restricted fetal heart: should we use glucocorticoids?. J. Matern. Fetal Neonatal. Med. , (2012).
  37. Miller, S. L., Chai, M., et al. The effects of maternal betamethasone administration on the intrauterine growth-restricted fetus. Endocrinology. 148 (3), 1288-1295 (2007).
  38. Palahniuk, R. J., Shnider, S. M. Maternal and fetal cardiovascular and acid-base changes during halothane and isoflurane anesthesia in the pregnant ewe. Anesthesiology. 41 (5), 462-472 (1974).
  39. Baumgartner, C., Bollerhey, M., Ebner, J., Laacke-Singer, L., Schuster, T., Erhardt, W. Effects of ketamine-xylazine intravenous bolus injection on cardiovascular function in rabbits. Can. J. Vet. Res. 74 (3), 200-208 (2010).
  40. Cruz-Martinez, R., Figueras, F., et al. Learning curve for Doppler measurement of fetal modified myocardial performance index. Ultrasound Obstet. Gynecol. 37 (2), 158-162 (2011).
  41. Germanakis, I., Gardiner, H. Assessment of fetal myocardial deformation using speckle tracking techniques. Fetal Diagn. Ther. 32 (1-2), 39-46 (2012).
  42. D'hooge, J., Heimdal, A. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur. J. Echocardiogr. 1 (3), 154-170 (2000).
  43. Flake, A. W., Villa, R. L., Adzick, N. S., Harrison, M. R. Transamniotic fetal feeding. II. A model of intrauterine growth retardation using the relationship of "natural runting" to uterine position. J. Pediatr. Surg. 22 (9), 816-819 (1987).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved