JoVE Logo
Faculty Resource Center

Sign In

Abstract

Bioengineering

Analysis of Targeted Viral Protein Nanoparticles Delivered to HER2+ Tumors

Published: June 18th, 2013

DOI:

10.3791/50396

1Department of Biomedical Engineering, University of Southern California, 2Department of Biomedical Sciences, Cedars-Sinai Medical Center, 3Geffen School of Medicine, University of California, Los Angeles

The HER2+ tumor-targeted nanoparticle, HerDox, exhibits tumor-preferential accumulation and tumor-growth ablation in an animal model of HER2+ cancer. HerDox is formed by non-covalent self-assembly of a tumor targeted cell penetration protein with the chemotherapy agent, doxorubicin, via a small nucleic acid linker. A combination of electrophilic, intercalation, and oligomerization interactions facilitate self-assembly into round 10-20 nm particles. HerDox exhibits stability in blood as well as in extended storage at different temperatures. Systemic delivery of HerDox in tumor-bearing mice results in tumor-cell death with no detectable adverse effects to non-tumor tissue, including the heart and liver (which undergo marked damage by untargeted doxorubicin). HER2 elevation facilitates targeting to cells expressing the human epidermal growth factor receptor, hence tumors displaying elevated HER2 levels exhibit greater accumulation of HerDox compared to cells expressing lower levels, both in vitro and in vivo. Fluorescence intensity imaging combined with in situ confocal and spectral analysis has allowed us to verify in vivo tumor targeting and tumor cell penetration of HerDox after systemic delivery. Here we detail our methods for assessing tumor targeting via multimode imaging after systemic delivery.

Tags

Keywords HER2 Tumor

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved