A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe the device fabrication and measurement protocol for carbon nanotube based high frequency biosensors. The high frequency sensing technique mitigates the fundamental ionic (Debye) screening effect and allows nanotube biosensor to be operated in high ionic strength solutions where conventional electronic biosensors fail. Our technology provides a unique platform for point-of-care (POC) electronic biosensors operating in physiologically relevant conditions.
The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) 1-4 make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density5 in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded6-8.
We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers9-11. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies11-12. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier.
Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube13, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber14 onto the device, and (d) carry out high frequency sensing in different ionic strength solutions11.
When a charged molecule binds to a SWNT or NW electronic sensor, it can either donate/accept electrons or act as a local electrostatic gate. In either case, the bound molecule can alter the charge density in the SWNT or NW channel, leading to a change in the measured DC conductance of the sensor. A large variety of molecules15-20 have been successfully detected by studying DC characteristics of the nanosensors during such binding events. Even though charge-detection based sensing mechanism has many advantages including label-free detection21, femto-molar sensitivity22, and electronic read out capability15; it is effective only in low ionic strength solutions. In high ionic strength solutions, DC detection is impeded by ionic screening6-8. A charged surface attracts counter-ions from the solution which forms an electrical double layer (EDL) near the surface. The EDL effectively screens off these charges. As the ionic strength of the solution increases, the EDL becomes narrower and the screening increases. This screening effect is characterized by the Debye screening length λD,
, where ε is the dielectric permittivity of the media, kB is the Boltzmann's constant, T is the temperature, q is the electron charge, and c is the ionic strength of the electrolyte solution. For a typical 100 mM buffer solution, λD is around 1 nm and the surface potential will be completely screened at a distance of a few nm. As the result, most of nanoelectronic sensors based on SWNTs or NWs operate either in dry state20 or in low ionic strength solutions5,15,17,21-22 (c ~ 1 nM - 10 mM); otherwise the sample needs to undergo desalting steps15,23. Point-of-care diagnostic devices need to operate in physiologically relevant ionic strengths at patient site with limited sample processing capability. Hence, mitigating ionic screening effect is critical for development and implementation of POC nanoelectronic biosensors.
We mitigate the ionic screening effect by operating SWNT based nanoelectronic sensor at megahertz frequency range. The protocol provided here details the fabrication of a SWNT transistor based nanoelectronic sensing platform and high frequency mixing measurement for biomolecular detection. The single-walled carbon nanotubes are grown by chemical vapor deposition on substrates patterned with Fe catalysts24. For our SWNT transistors, we incorporate a suspended top-gate25 placed 500 nm above the nanotube, which helps enhance high frequency sensor response and also allows for a compact micro-fluidic chamber to seal the device. The SWNT transistors are operated as high frequency mixers9-11 in order to overcome the background ionic screening effects. At high frequencies, the mobile ions in solution do not have sufficient time to form the EDL and the fluctuating biomolecular dipoles can still gate the SWNT to generate a mixing current, which is our sensing signal. The frequency mixing arises due to the nonlinear I-V characteristics of a nanotube FET. Our detection technique differs from the conventional techniques of charge based detection and impedance spectroscopy26-27. Firstly, we detect biomolecular dipoles at high frequency rather than the associated charges. Secondly, the high transconductance of SWNT transistor provides an internal gain for the sensing signal. This obviates the need for external amplification as in case of high frequency impedance measurements. Recently, other groups have also addressed biomolecular detection in high background concentrations23,28. However, these methods are more involved, requiring complex fabrication or careful chemical engineering of receptor molecules. Our high frequency SWNT sensor incorporates a simpler design and utilizes the inherent frequency mixing property of a nanotube transistor. We are able to mitigate the ionic screening effects, thus promising a new biosensing platform for real-time point-of-care detection, where biosensors functioning directly in physiologically relevant condition are desired.
Access restricted. Please log in or start a trial to view this content.
1. Catalyst Patterning for SWNT Growth
Tip: Design pits of different sizes e.g. 5 micron x 5 micron, 10 micron x 5 micron etc. to account for the variability in SWNT chemical vapor deposition (CVD) growth process.
2. CVD Growth of Carbon Nanotubes
Tip: Determine sweet spot for nanotube growth. Growth is uniform over an area of 2inch x 2inch downstream for our furnace (Figure 2c).
3. SWNT FET Transistor Fabrication
Tip: Extend electrode contact pads far apart on the die so that they remain accessible even after putting down a micro-fluidic stamp on the active nanotube region.
Tip: Use thick chrome layer to increase strength of suspended top gate. Gate dimensions are also critical for successful suspension.
Tip: Etch time calibration is recommended.
4. Chemical Functionalization of Carbon Nanotube Sidewalls
Note: We rinse the die by dispensing DI water (~50 ml) over the die using a squeeze bottle. Then we move the die to another Petri dish containing DI water and move the die around for 1 min. We repeat the two steps a total of 8-10 times.
5. Preparation of Polydimethylsiloxane (PDMS) Mold for Fluid Chamber
Tip: If the mixture starts foaming, vent the chamber and let it settle down for a few seconds before degassing again.
Tip: The PDMS side directly in contact with the silicon wafer is clean and extremely flat. This side will be in contact with the SWNT FET die. Be careful not to contaminate it.
Tip: This can be done with the naked eye or using an optical microscope with enough working space. If the PDMS does not stick well (generally if the die and/or the PDMS stamp is not clean), do oxygen plasma (20 watts, 15 sec) on PDMS to assist bonding. Using plasma powers higher than this leads to stronger bonding, however, we have seen ripping of electrodes while removing the PDMS in such case.
6. Preparation of Microfluidic Flow Channel
Tip: To avoid collapse of structure a channel width: height ratio of 10:1 is sufficient (300 μm: 30 μm in this case).
7. DC Electrical Measurement Setup
Tip: For measurements in solution, keep gate voltage sweep parameter within |0.7 volts| to avoid leakage and reaction between the gate metal electrode and solution.
8. AC Electrical Measurement Setup
9. Electrical Measurements in Solution (No Flow)
Tip: Use pipette to withdraw previous solution and then flush the chamber multiple times with the new solution. Always switch from the low to high concentration solutions.
10. Electrical Measurement in Solution (Real Time Flow)
Access restricted. Please log in or start a trial to view this content.
A scanning electron microscope image of SWNT transistor with a suspended top gate is shown in Figure 7a. The gate dimensions are critical for suspension25. The current design dimensions are (length x width x thickness = 25 μm x 1 μm x 100 nm). The gate electrode consists of 50 nm Cr/50 nm Au; a thick chrome layer adds more strength to suspended structure. The suspended structure is confirmed by absence of leakage current between top gate and drain (Figure 7b).
Access restricted. Please log in or start a trial to view this content.
The growth of carbon nanotubes depends not only on furnace conditions but also substrate cleanliness. The optimal gas flow rate, temperature and pressure for growth have to carefully calibrated and once fixed they are more or less stable. Even with these conditions being met, we found that growth depends on the patterned catalyst area, amount of catalyst and substrate cleanliness. Hence, we incorporated multiple catalyst pit sizes to account for the variability in growth. A one hour high temperature anneal step helped re...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
We thank Prof. Paul McEuen at Cornell University for early discussion. The work is supported by the start-up fund provide by the University of Michigan and the National Science Foundation Scalable Nanomanufacturing Program (DMR-1120187). This work used the Lurie Nanofabrication Facility at University of Michigan, a member of the National Nanotechnology Infrastructure Network funded by the National Science Foundation.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
REAGENTS | |||
Reagents which were provided within Lurie Nanofabrication Facility (University of Michigan) are marked as LNF in the catalogue column. Chemicals which require protective equipment (gloves, safety goggles, face mask, apron) and/or fume hood are denoted with PPE in comments section. | |||
Silicon wafers (P-type, <100>, 500-550 μm thick) | Silicon Valley Microelectronics | ||
SPR 220 3.0 | Dow (Rohm and Haas) | Megaposit SPR | PPE |
AZ 300MIF | AZ Electronic Material Corporation | PPE | |
Acetone | J T Baker | 9005-05 | PPE |
Isopropanol (IPA) | J T Baker | 9079-05 | |
Buffered Hydrofluoric Acid | Transene | PPE | |
1-Pyrene Butanoic Acid, succinimidyl ester | Molecular Probes | P130 | PPE |
Biotin PEO Amine | Thermo Scientific | EZ- Link PEG2 Biotin, # 21346 | PPE |
Streptavidin | Invitrogen | S 888 | PPE |
Dimethylformamide | MP Biomedicals | 0219514791 | PPE |
Polydimethylsiloxane Elastomer Base and Curing Agent | Dow Corning | Sylgard 184 Elastomer Kit | PPE |
SU-8 2015 | Microchem | Y111064 | PPE |
SU-8 Developer | Microchem | Y020100 | PPE |
Silanizing agent | Sigma Aldrich | 452807 | PPE |
Hydrogen | Purity Plus | LNF | |
Ethylene | Purity Plus | LNF | |
Argon | Purity Plus | LNF | |
Phosphate Buffer Saline System | Sigma Aldrich | PBS1 | |
EQUIPMENT | |||
Equipment provided by Lurie Nanofabrication Facility (University of Michigan) is denoted as LNF in Catalogue column. | |||
GCA 200 Autostepper | GCA | LNF | |
Low Pressure Chemical Vapor Deposition Tool | Tempress | LNF | |
e-beam Evaporator | Enerjet | LNF | |
CNT growth Furnace | First Nano | Easy Tube 3000 (LNF) | |
Photomasks | Nanofilm | LNF | |
Petri dish (150mm) | LNF | ||
Desiccator | Bel-Art | F420100000 | |
Biopsy Punch | Ted Pella | 15071/78 | |
Scalpel | Ted Pella | 548 | |
Polyethylene Tubing PE-50 | VWR | 20903-414 | |
Syringe Pump | New Era Pump Systems | NE-1000 | |
Syringe | Fisher Scientific | BD Safety-Lok Syringes | |
Syringe Needles | Fisher Scientific | 14-821-13A | |
DAQ card | National Instruments | 779111-01 | |
GPIB connector | National Instruments | 778032-51 | |
Lock-in Amplifier | Stanford Research Systems | SR 830 | |
Frequency Generator | HP Agilent | 8648B, 9kHz -2GHz | |
Bias Tee | Picosecond | 5575A-104 | |
Current Preamplifier | DL Instruments, LLC | DL 1211 | |
BNC cables | Allied Electronics | 665-xxxx | |
SMA cables | Sentro Tech Corp | SCF65141 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved