JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Membrane Potential Dye Imaging of Ventromedial Hypothalamus Neurons From Adult Mice to Study Glucose Sensing

Published: November 27th, 2013

DOI:

10.3791/50861

1Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, 2Center for Taste and Feeding Behavior, Universite de Bourgogne

The activity of single neurons from adult-aged mice can be studied by dissociating neurons from specific brain regions and using fluorescent membrane potential dye imaging. By testing responses to changes in glucose, this technique can be used to study the glucose sensitivity of adult ventromedial hypothalamic neurons.

Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

The brain regulates energy homeostasis through the neuroendocrine and autonomic nervous systems. The ventromedial hypothalamus (VMH), comprised of the ventromedial nucleus (VMN) and the arcuate nucleus (ARC), is important for the central regulation of energy homeostasis. Specialized glucose sensing neurons, within the VMH, link neuronal activity and peripheral glucose homeostasis1. There are two types of glucose sensing neurons; glucose excited (GE) neurons increase while glucose inhibited (GI) neurons decrease their activity as extracellular glucose increases. VMH glucose sensing neurons are generally studied using electrophysiology or calcium/membrane pot....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Animals

  1. All procedures were approved by the Institutional Animal Care and Use Committee at the University of Medicine and Dentistry of New Jersey.
  2. Group house male C57BL/6 mice on a 12 hr light/12 hr dark schedule and allow ad libitum access to water and food. Sacrifice at 4-5 months old. Euthanasia of the mice was performed using the surgical plane of anesthesia and a secondary form of euthanasia (i.e. penetrating incision into the chest cavity via the diaphragm). Thi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The precise dissection of the VMH away from other hypothalamic areas is important to obtain consistent results. The inclusion of other areas could dilute the VMH neuronal population, changing the % of depolarized neurons calculated. Furthermore, glucose sensing neurons have been identified in other hypothalamic regions, such as the lateral hypothalamus, which may differ functionally and mechanistically from VMH glucose sensing neurons. Figure 1 illustrates the correct anatomical locations for proper diss.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The key to being able to study activity of neurons from adult mice is the ability to dissociate healthy neurons. Dissociation of hypothalamic neurons from adult mice is more difficult at several key steps in the protocol compared to neurons from juvenile mice. We have overcome this problem in a number of ways. Making thick 500 µm brain slices minimizes mechanical damage to neurons compared to the usual 250-350 µm slices used for brain tissue from younger mice. However, thicker slices require greater attention t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NIH R01 DK55619, NIH R21 CA139063

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Neurobasal-A Medium (Custom)Invitrogen0050128DJcustom made glucose free
Hibernate-A Medium (Custom)BrainBitscustom made glucose free
Penicillin streptomycin (20,000 U/ml)Invitrogen15140other vendors acceptable
Stericup vacuum filter units (0.22 μm)Milliporeother vendors acceptable
25 mm Glass coverslipsWarner#1 25mm round
18 mm Glass coverslipsWarner#1 18mm round
GlutaMAXInvitrogen35050
B27 minus insulin (50x)Invitrogen0050129SA
Razor bladeVWR55411
Vibratome & cooling chamberVibratomeSeries 1000 Sectioning system
Vibratome bladesPolysciences22370injector or double edge blades from other vendors acceptable
Papain, suspensionWorthingtonLS003124
BSA, suitable for cell cultureSigmaother vendor acceptable
DNAse, for cell cultureInvitrogenother vendor acceptable
cloning cylinders, 6 mm x 8 mmBellco Glass2090-00608
Membrane Potential Dye (blue)Molecular DevicesR8042
In-line heaterWarnerSF-28
Syringe pumpsWPIsp100iother vendor acceptable
Closed chamberWarnerRC-43C
Polyethylene tubingWarnerPE-90
MetamorphMolecular Devicesalternate image analysis software acceptable
MicroscopeOlympusBX61 WI

used with 10X objective

CameraPhotometricsCool Snap HQ
Narrow Cy3 Filter SetChroma41007a
Illumination SystemSutter InstrumentsLambda DG-4

  1. Routh, V. H. Glucose-sensing neurons: are they physiologically relevant?. Physiol. Behav. 76, 403-413 (2002).
  2. Canabal, D. D., Potian, J. G., Duran, R. G., McArdle, J. J., Routh, V. H. Hyperglycemia impairs glucose and insulin regulation of nitric oxide production in glucose-inhibited neurons in the ventromedial hypothalamus. Am. J. Physiol. 293, 592-600 (2007).
  3. Canabal, D. D., et al. Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus. American journal of physiology. Reg. Integr. Comp. Physiol. 292, 1418-1428 (2007).
  4. Murphy, B. A., Fakira, K. A., Song, Z., Beuve, A., Routh, V. H. AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am. J. Physiol. Cell Physiol. 297, C750-C758 (2009).
  5. Murphy, B. A., et al. Fasting enhances the response of arcuate neuropeptide Y-glucose-inhibited neurons to decreased extracellular glucose. Am. J. Physiol. Cell Physiol. 296, C746-C756 (2009).
  6. Kang, L., et al. Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes. 55, 412-420 (2006).
  7. Kang, L., et al. Prior hypoglycemia enhances glucose responsiveness in some ventromedial hypothalamic glucosensing neurons. Reg. Integr. Comp. Physiol. 294, R784-R792 (2008).
  8. Paxinos, G., Franklin, K. B. J. . The Mouse Brain in Stereotaxic Coordinates. , (2004).
  9. Paxinos, G., Watson, C. . The Rat Brain in Stereotaxic Coordinates. , (1998).
  10. Song, Z., Levin, B. E., McArdle, J. J., Bakhos, N., Routh, V. H. Convergence of pre- and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes. 50, 2673-2681 (2001).
  11. Song, Z., Routh, V. H. Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes. 54, 15-22 (2005).

Tags

Membrane Potential Dye Imaging

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved