JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

原正畸胶质血异草回顾渗透生长和同源脱氢酶 I 突变

Published: January 14th, 2014

DOI:

10.3791/50865

1Department of Neurology, Vanderbilt University Medical Center, 2Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, 3Neurology Service, Veteran Affairs TVHS

恶性胶质瘤是一组具有明显临床和分子特征的高度渗透性胶质肿瘤的异质性群体。原位矫形异种格拉夫特在前科动物模型中重新概括恶性胶质瘤亚型的组织病理学和分子特征。

恶性胶质瘤是一组具有明显临床和分子特征的高度渗透性胶质肿瘤的异质性群体。原位矫形异种格拉夫特在前科动物模型中重新概括恶性胶质瘤亚型的组织病理学和分子特征。为了模拟世卫组织在移植检测中的I级和IV级恶性胶质瘤,人类肿瘤细胞被异种移植到免疫功能低下小鼠的正交部位——大脑中。与利用培养肿瘤细胞的继发性异种移植物相比,人类胶质瘤细胞与被切除的标本分离,在组织培养中无需事先通过移植即可产生原发性异种移植。本报告中的程序详细说明了肿瘤样本准备、颅内移植到免疫功能低下的小鼠、肿瘤移植监测以及肿瘤收获,供随后进入受体动物或进行分析。肿瘤细胞准备需要2小时,外科手术需要20分钟/动物。

恶性胶质瘤是发生在大脑和脊髓的中枢神经系统的原发性胶质肿瘤。胶质瘤由世界卫生组织(世卫组织)根据组织学上与星形细胞、寡头细胞或子细胞的相似性进行分类,然后根据恶性病理特征进行数值分级(I至IV)。最常见的组织学亚型是天体细胞瘤、寡头性腺胶质瘤和混合寡头肌细胞瘤。包括世卫组织二至四级在内的恶性胶质瘤的特点是侵入性生长和对现有疗法的顽固不化。在美国,每年约有15,750人被诊断为恶性胶质瘤,估计有12,740名患者死于这种疾病。这些统计数字突出了恶性胶质瘤的特别致命性,以及提高疗效的重要需要。

癌症模型对于研究肿瘤生物学和疗法至关重要。人类癌细胞系是体外操纵和体外异种移植研究(继发性异种移植)1的重要第一步。然而,标准癌细胞培养经历表型和基因型转换2-4,可能无法恢复在继发性异种移植5。此外,基因改变,如异辛酸盐脱氢酶(IDH)突变6,独特的干细胞种群7和对关键信号通路8的依赖,可能会在癌细胞培养中消失。基因组特征可以在癌症领域培养中更好地保持,但仍不能完全反映原肿瘤的基因型2,3。直接正交移植否定了体外培养的影响,提供了适当的微环境,并保留了肿瘤启动细胞9,10的完整性。因此,原生异种移植物是一种强大而相关的临床前模型,用于严格测试靶....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. 肿瘤细胞悬架的准备

注: 需要为使用患者材料和动物提供适当的机构批准,以建立和维持原发性正畸胶质瘤异种移植物。在范德比尔特大学医学中心,在患者同意下收集超过诊断所需量的肿瘤材料,用于研究组织库。标本标本标注带有随机的 5 位 REDcap 数据库编号,并删除所有患者特定标识符。REDcap 数据库包含组织存储库中每个标本的分离临床数据,包括性别.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

分离的胶质瘤细胞被直接移植到免疫功能低下的小鼠的大脑中,以获得原位正畸异种移植线。每个肿瘤标本在移植前被分配一个随机数字,作为去除受保护的健康信息的分离过程的一部分。为此,我们使用 5 位 REDcap 数据库编号。 图1 说明了从胶质母细胞瘤(GBM 17182)与同心酸脱氢酶1(IDH1)突变精氨酸132到组织丁(R132H)建立异种移植线的过程和命名。移植后,肿瘤识别号中添加"X"?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

培养细胞系、异种移植和转基因小鼠是模拟胶质瘤的最常见方法,每个模型系统3,13,14都有明显的益处和局限性。原位正交胶质瘤异种移植的相关好处包括渗透性生长,这些生长是弥漫性胶质瘤的典型代表,以及保留遗传改变和重要的信号机制,这些机制在培养的胶质瘤细胞中可能极其难以维持。例如,isocitrate脱氢酶突变和声波刺猪配体生产可以维持在原位矫形异种格拉夫特.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

我们特别感谢范德比尔特大学医学中心的患者,他们为分子神经外科组织库提供了宝贵的研究材料。我们感谢那些建立和维护组织银行的人,里德·汤普森MD(首席调查员),樱桃金纳德RN(研究护士)和拉里A.皮尔斯MS(经理)。组织学服务部分由范德比尔特大学医学中心 (VUMC) 转化病理共享资源(由 5P30 CA068485 奖支持范德比尔特-英格拉姆癌症中心)执行。这项工作得到了国家发展局(1R21NS070139)、伯劳斯威康基金和VMC发展基金向MKC提供的赠款的支持。MKC 由退伍军人事务部、退伍军人健康管理局、研究和发展办公室、生物医学实验室研究和发展部通过赠款 1 I01 BX000744-01 获得支持。内容不代表退伍军人事务部或美国政府的意见。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments

Phosphate buffered saline

Life Technologies

14040-133

Papain dissociation system

Worthington Biochemical Corp.

LK003150

Trypan blue solution 0.4%

Life Technologies

15250061

Ketamine HCl

Obtained from institutional pharmacy or local veterinary supply company

Xylazine HCl

Ketoprofen

Ophthalmic ointment

Povidone-iodine

Fisher Scientific

190061617

Cryopreservation medium and proliferation supplement

StemCell Technologies

05751

0.2% Heparin sodium salt in PBS

StemCell Technologies

07980

Penicillin-streptomycin

Life Technologies

15140-122

Dimethyl sulfoxide

Sigma-Aldrich

D6250-5X10ML

NOD.Cg-Prkdcscid I/2rgtm1Wjl/SzJ mice

The Jackson Laboratory

005557

NSG mice

Anti-human vimentin antibody

Dako

M7020

Use 1:200 to 1:800

Anti-human IDH1 R132H antibody

Dianova

DIA-H09

Use 1:100 to 1:400

Material

Company

Catalogue Number

Comments

Centrifuge with swinging bucket rotor

Pipetter with dispensing speed control

Disposable hemocytometer

Fisher Scientific

22-600-100

Sterile surgical gloves

Fisher Scientific

11-388128

Disposable gown

Fisher Scientific

18-567

Surgical mask

Fisher Scientific

19-120-1256

Tuberculin syringe

BD

305620

Alcohol pads

Fisher Scientific

22-246-073

Portable electronic scale

Fisher Scientific

01-919-33

Zoom stereomicroscope

Surgical clipper

Stoelting

51465

Scalpel handle

Fine Science Tools

10003-12

Scalpel blades, #10

Stereotaxic instrument

Stoelting

51730

High-speed drill

Stoelting

51449

Drill bit, 0.6 mmStoelting514552

Hamilton syringe

Hamilton

80336

Autoclip, 9 mm

BD

427630

Circulating water warming pad

Kent Scientific

TP-700

TP-1215EA

Hot bead dry sterilizer

Kent Scientific

INS300850

Surgical scissors

Fine Science Tools

14101-14

Fine scissors

Fine Science Tools

14094-11

Spring scissors

Fine Science Tools

15018-10

Dumont forceps

Fine Science Tools

11251-30

Semimicro spatulas

Fisher Scientific

14374

Mouse brain slicer matrix

Zivic Instruments

BSMAS002-1

Cryogenic storage vials

Fisher Scientific

12-567-501

  1. Johnson, J. I., et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. 84, 1424-1431 (2001).
  2. Witt Hamer, D. e., C, P., et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 27, 2091-2096 (2008).
  3. Lee, J., et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9, 391-403 (2006).
  4. Pandita, A., Aldape, K. D., Zadeh, G., Guha, A., James, C. D. Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 39, 29-36 (2004).
  5. Daniel, V. C., et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69, 3364-3373 (2009).
  6. Piaskowski, S., et al. Glioma cells showing IDH1 mutation cannot be propagated in standard cell culture conditions. Br. J. Cancer. 104, 968-970 (2011).
  7. Vescovi, A. L., Galli, R., Reynolds, B. A. Brain tumour stem cells. Nat. Rev. 6, 425-436 (2006).
  8. Sasai, K., et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res. 66, 4215-4222 (2006).
  9. Shu, Q., et al. Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells. 26, 1414-1424 (2008).
  10. Suggitt, M., Bibby, M. C. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971-981 (2005).
  11. Kerbel, R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2, 134-139 (2003).
  12. Park, C. Y., Tseng, D., Weissman, I. L. Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol. Ther. 17, 219-230 (2009).
  13. Carlson, B. L., Pokorny, J. L., Schroeder, M. A., Sarkaria, J. N. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr. Protoc. Pharmacol. Chapter. 14, (2011).
  14. Hambardzumyan, D., Parada, L. F., Holland, E. C., Charest, A. Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia. 59, 1155-1168 (2011).
  15. Sarangi, A., et al. Targeted inhibition of the Hedgehog pathway in established malignant glioma xenografts enhances survival. Oncogene. 28, 3468-3476 (2009).
  16. Valadez, J. G., et al. Identification of Hedgehog pathway responsive glioblastomas by isocitrate dehydrogenase mutation. Cancer Lett. 328, 297-306 (2013).
  17. Bar, E. E., et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 25, 2524-2533 (2007).
  18. Ehtesham, M., et al. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene. 26, 5752-5761 (2007).
  19. Kelly, J. J., et al. Oligodendroglioma cell lines containing t(1;19)(q10;p10. Neuro-oncology. 12, 745-755 (2010).
  20. Quintana, E., et al. Efficient tumour formation by single human melanoma cells. Nature. 456, 593-598 (2008).
  21. Shultz, L. D., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477-6489 (2005).
  22. Singh, S. K., et al. Identification of human brain tumour initiating cells. Nature. 432, 396-401 (2004).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved