JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Primær ortopisk Glioma Xenografts Rekapitulere infiltrerende vækst og isocitrate Dehydrogenase I Mutation

Published: January 14th, 2014

DOI:

10.3791/50865

1Department of Neurology, Vanderbilt University Medical Center, 2Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, 3Neurology Service, Veteran Affairs TVHS

Maligne gliomer udgør en heterogen gruppe af stærkt infiltrerende glial neoplasmer med forskellige kliniske og molekylære træk. Primære ortopiske xenografter opsummerer de histopatologiske og molekylære træk ved ondartede gliomundertyper i prækliniske dyremodeller.

Maligne gliomer udgør en heterogen gruppe af stærkt infiltrerende glial neoplasmer med forskellige kliniske og molekylære træk. Primære ortopiske xenografter opsummerer de histopatologiske og molekylære træk ved ondartede gliomundertyper i prækliniske dyremodeller. Til model WHO kvaliteter III og IV ondartede gliomer i transplantation assays, menneskelige tumorceller er xenografted i en orthotopic site, hjernen, af immunkompromitterede mus. I modsætning til sekundære xenografts, der bruger dyrkede tumorceller, er humane glioma celler dissociated fra resected prøver og transplanteret uden forudgående passage i vævskultur til at generere primære xenografts. Proceduren i denne rapport detaljer tumor prøve forberedelse, intrakraniel transplantation i immunkompromitterede mus, overvågning for tumor engraftment og tumor høst for efterfølgende passage i recipient dyr eller analyse. Tumor celle forberedelse kræver 2 timer og kirurgisk procedure kræver 20 min / dyr.

Maligne gliomer er primære glia tumorer i centralnervesystemet, der forekommer i hjernen og lejlighedsvis rygmarven. Gliomer er klassificeret af Verdenssundhedsorganisationen (WHO) i henhold til histologiske lighed med astrocytter, oligodendrocytter eller ependymale celler og derefter numerisk klassificeret (I til IV) for patologiske træk ved malignitet. De mest almindelige histologiske undertyper er astrocytomas, oligodendrogliomas og blandede oligoastrocytomas. Maligne gliomer, der omfatter WHO-kvaliteter II til IV, er kendetegnet ved invasiv vækst og genstridige til nuværende behandlingsformer. Hvert år i USA, ca 15.750 personer er diagnosticeret med en ondartet gl....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Forberedelse af tumorcelle suspension

Bemærk: Der kræves passende institutionelle godkendelser til brug af patientmateriale og -dyr for at etablere og vedligeholde primære ortopiske gliom xenografter. På Vanderbilt University Medical Center indsamles resected tumormateriale, der overstiger det, der kræves til diagnostiske formål, med patientens samtykke til et forskningsvævslager. Prøverne er mærket med et randomiseret 5-cifret REDcap-databasenummer, og alle patient.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Dissociated glioma celler transplanteres direkte ind i hjernen hos immunkompromitterede mus for at opnå primære ortopiske xenograft linjer. Hver tumorprøve tildeles et randomiseret tal før transplantation som en del af afidentifikationsprocessen for at fjerne beskyttede sundhedsoplysninger. Vi bruger et 5-cifret REDcap-databasenummer til dette formål. Figur 1 illustrerer processen og nomenklaturen for etablering af en xenograftlinje fra et glioblastoma (GBM 17182) med isocitratdehydrogenase 1 (IDH1).......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Dyrkede cellelinjer, xenografts og genetisk manipulerede mus er de mest almindelige metoder til modellering af gliomer, og der er forskellige fordele og begrænsninger for hvert modelsystem3,13,14. Relevante fordele ved primære ortopiske glioma xenografts omfatter infiltrerende vækst, der kendetegner diffuse gliomer og fastholdelse af genetiske ændringer og vigtige signalmekanismer, der kan være overordentlig vanskeligt at opretholde i dyrkede gliomceller. For eksempel kan isocitrat dehydrogenase .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Vi står især i gæld til patienter på Vanderbilt University Medical Center, der leverede uvurderligt forskningsmateriale til Molecular Neurosurgical Tissue Bank. Vi takker dem, der etablerede og vedligeholder Tissue Bank, Reid C. Thompson MD (principal investigator), Cherryl Kinnard RN (forskningssygeplejerske) og Larry A. Pierce MS (manager). Histologiske tjenester blev delvist udført af Vanderbilt University Medical Center (VUMC) Translational Pathology Shared Resource (støttet af tildeling 5P30 CA068485 til Vanderbilt-Ingram Cancer Center). Dette arbejde blev støttet af tilskud til MKC fra NINDS (1R21NS070139), Burroughs Wellcome Fund og VMC udviklingsmidler. MKC er....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments

Phosphate buffered saline

Life Technologies

14040-133

Papain dissociation system

Worthington Biochemical Corp.

LK003150

Trypan blue solution 0.4%

Life Technologies

15250061

Ketamine HCl

Obtained from institutional pharmacy or local veterinary supply company

Xylazine HCl

Ketoprofen

Ophthalmic ointment

Povidone-iodine

Fisher Scientific

190061617

Cryopreservation medium and proliferation supplement

StemCell Technologies

05751

0.2% Heparin sodium salt in PBS

StemCell Technologies

07980

Penicillin-streptomycin

Life Technologies

15140-122

Dimethyl sulfoxide

Sigma-Aldrich

D6250-5X10ML

NOD.Cg-Prkdcscid I/2rgtm1Wjl/SzJ mice

The Jackson Laboratory

005557

NSG mice

Anti-human vimentin antibody

Dako

M7020

Use 1:200 to 1:800

Anti-human IDH1 R132H antibody

Dianova

DIA-H09

Use 1:100 to 1:400

Material

Company

Catalogue Number

Comments

Centrifuge with swinging bucket rotor

Pipetter with dispensing speed control

Disposable hemocytometer

Fisher Scientific

22-600-100

Sterile surgical gloves

Fisher Scientific

11-388128

Disposable gown

Fisher Scientific

18-567

Surgical mask

Fisher Scientific

19-120-1256

Tuberculin syringe

BD

305620

Alcohol pads

Fisher Scientific

22-246-073

Portable electronic scale

Fisher Scientific

01-919-33

Zoom stereomicroscope

Surgical clipper

Stoelting

51465

Scalpel handle

Fine Science Tools

10003-12

Scalpel blades, #10

Stereotaxic instrument

Stoelting

51730

High-speed drill

Stoelting

51449

Drill bit, 0.6 mmStoelting514552

Hamilton syringe

Hamilton

80336

Autoclip, 9 mm

BD

427630

Circulating water warming pad

Kent Scientific

TP-700

TP-1215EA

Hot bead dry sterilizer

Kent Scientific

INS300850

Surgical scissors

Fine Science Tools

14101-14

Fine scissors

Fine Science Tools

14094-11

Spring scissors

Fine Science Tools

15018-10

Dumont forceps

Fine Science Tools

11251-30

Semimicro spatulas

Fisher Scientific

14374

Mouse brain slicer matrix

Zivic Instruments

BSMAS002-1

Cryogenic storage vials

Fisher Scientific

12-567-501

  1. Johnson, J. I., et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. 84, 1424-1431 (2001).
  2. Witt Hamer, D. e., C, P., et al. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 27, 2091-2096 (2008).
  3. Lee, J., et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9, 391-403 (2006).
  4. Pandita, A., Aldape, K. D., Zadeh, G., Guha, A., James, C. D. Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 39, 29-36 (2004).
  5. Daniel, V. C., et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69, 3364-3373 (2009).
  6. Piaskowski, S., et al. Glioma cells showing IDH1 mutation cannot be propagated in standard cell culture conditions. Br. J. Cancer. 104, 968-970 (2011).
  7. Vescovi, A. L., Galli, R., Reynolds, B. A. Brain tumour stem cells. Nat. Rev. 6, 425-436 (2006).
  8. Sasai, K., et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res. 66, 4215-4222 (2006).
  9. Shu, Q., et al. Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells. 26, 1414-1424 (2008).
  10. Suggitt, M., Bibby, M. C. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971-981 (2005).
  11. Kerbel, R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2, 134-139 (2003).
  12. Park, C. Y., Tseng, D., Weissman, I. L. Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol. Ther. 17, 219-230 (2009).
  13. Carlson, B. L., Pokorny, J. L., Schroeder, M. A., Sarkaria, J. N. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr. Protoc. Pharmacol. Chapter. 14, (2011).
  14. Hambardzumyan, D., Parada, L. F., Holland, E. C., Charest, A. Genetic modeling of gliomas in mice: new tools to tackle old problems. Glia. 59, 1155-1168 (2011).
  15. Sarangi, A., et al. Targeted inhibition of the Hedgehog pathway in established malignant glioma xenografts enhances survival. Oncogene. 28, 3468-3476 (2009).
  16. Valadez, J. G., et al. Identification of Hedgehog pathway responsive glioblastomas by isocitrate dehydrogenase mutation. Cancer Lett. 328, 297-306 (2013).
  17. Bar, E. E., et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 25, 2524-2533 (2007).
  18. Ehtesham, M., et al. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene. 26, 5752-5761 (2007).
  19. Kelly, J. J., et al. Oligodendroglioma cell lines containing t(1;19)(q10;p10. Neuro-oncology. 12, 745-755 (2010).
  20. Quintana, E., et al. Efficient tumour formation by single human melanoma cells. Nature. 456, 593-598 (2008).
  21. Shultz, L. D., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477-6489 (2005).
  22. Singh, S. K., et al. Identification of human brain tumour initiating cells. Nature. 432, 396-401 (2004).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved