A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Our laboratory has developed DNA-crosslinked polyacrylamide hydrogels, a dynamic hydrogel system, to better understand the effects of modulating tissue stiffness on cell function. Here, we provide schematics, descriptions, and protocols to prepare these hydrogels.
Mechanobiology is an emerging scientific area that addresses the critical role of physical cues in directing cell morphology and function. For example, the effect of tissue elasticity on cell function is a major area of mechanobiology research because tissue stiffness modulates with disease, development, and injury. Static tissue-mimicking materials, or materials that cannot alter stiffness once cells are plated, are predominately used to investigate the effects of tissue stiffness on cell functions. While information gathered from static studies is valuable, these studies are not indicative of the dynamic nature of the cellular microenvironment in vivo. To better address the effects of dynamic stiffness on cell function, we developed a DNA-crosslinked polyacrylamide hydrogel system (DNA gels). Unlike other dynamic substrates, DNA gels have the ability to decrease or increase in stiffness after fabrication without stimuli. DNA gels consist of DNA crosslinks that are polymerized into a polyacrylamide backbone. Adding and removing crosslinks via delivery of single-stranded DNA allows temporal, spatial, and reversible control of gel elasticity. We have shown in previous reports that dynamic modulation of DNA gel elasticity influences fibroblast and neuron behavior. In this report and video, we provide a schematic that describes the DNA gel crosslinking mechanisms and step-by-step instructions on the preparation DNA gels.
Static and dynamic substrates are two categories of biomaterials that were developed to study the effects of tissue elasticity or stiffness on cell function. Static substrates are unable to change their physical properties after they are fabricated and/or once cells are plated. Polyacrylamide (PA) gels were the first two-dimensional, static substrates that were synthesized for mechanobiology investigations 5,17. PA gels are easy to prepare, inexpensive, versatile, and can be fabricated with a broad range of elastic moduli. Although these technical advantages make PA gels a commonly applied substrate, static substrates are not indicative of the dynamic nature of the extracellular matrix (ECM) and surrounding cellular environment in vivo. For example, the ECM undergoes stiffness alterations as a result of injury, development, or disease. Dynamic substrates are therefore favored as tissue-mimicking substrate models in mechanobiology studies 22,24,25.
Numerous synthetic, natural, two-dimensional, three-dimensional, static, and dynamic biomaterials have been developed to mimic tissue stiffness 1,3,6,16,23,26. Some dynamic substrates require heat, UV, electrical current, ions, and pH changes to alter their mechanical properties 2,4,7,8,12,15,16, but these stimuli can restrict the hydrogel’s bio-application. DNA-crosslinked polyacrylamide hydrogels (DNA gels) are dynamic two-dimensional elastic substrates. DNA crosslinks allow for temporal, spatial, and reversible modulation of DNA gel stiffness by addition of single-stranded DNA (ssDNA) to media or buffer 9-11,13,14,18,21. Unlike the aforementioned dynamic gels where stimuli are applied for modulation of elasticity, the DNA gels rely on the diffusion of applied ssDNA for the alteration of elasticity. Therefore, the upper gel surface, where cells are grown, is the first area modulated because the rate of elasticity modulation is dependent on the gel thickness.
DNA gels are similar to their PA gel counterparts in that they have a polyacrylamide backbone, however the bis-acrylamide crosslinks are replaced with crosslinks composed of DNA (Figure 1). Two ssDNAs (SA1 and SA2) hybridize with a crosslinker strand (L2) to make up the DNA crosslinks of the gel. SA1 and SA2 have distinct sequences that both contain an Acrydite modification at the 5´ end for effective incorporation into the PA network. For preparation of the gels, SA1 and SA2 are individually polymerized into a PA backbone and, subsequently, the polymerized SA1 and SA2 are mixed together. L2, the crosslinker, is added to the SA1 and SA2 mixture. The L2 base sequence is complementary to both SA1 and SA2 sequences and L2 hybridizes with SA1 plus SA2 to form the DNA crosslinks. Initial, DNA gel elasticity is determined by both L2 concentrations and crosslinking (Tables 1 and 2). DNA gels containing equal stoichiometric amounts of L2, SA1, and SA2 are the stiffest gels because SA1 and SA2 are 100% crosslinked by L2 (designated as 100% gels). Lower concentrations of L2 result in a lower percentage of DNA crosslinking and, therefore, softer DNA gels. Gels as low as 50% crosslinked (designated as 50% gels) have been constructed 9-11.
Figure 1. DNA gel crosslinking and uncrosslinking schematic 9-11,13,14,18,21. Step 1: SA1 (red) and SA2 (blue) are individually polymerized into a polyacrylamide backbone (black). After polymerization, SA1 and SA2 polymerized solutions are mixed together. Step 2: L2 (green) is added and hybridizes with SA1 plus SA2 to form the crosslinks of the gel. Step 3: R2 hybridizes with the toehold of L2. Step 4: Toehold hybridization of R2 propels the unzipping of L2 from SA1 and SA2.
Unlike PA gels, DNA gels can stiffen and soften after synthesis. For that reason, cells grown on DNA gels can be subjected to dynamic stiffness alterations. To stiffen cell-adherent gels, L2 can be added to the culture media of low percentage gels to increase the percentage of crosslinks. To soften cell-adherent gels, L2 can be removed to decrease the percentage of crosslinks 10,13,21. L2 has an additional toehold sequence at the 3´ end to allow L2 to uncrosslink from SA1 and SA2 (Table 1). Removal of L2 is accomplished by hybridization of a reversal strand called R2. R2 is complementary to the full length of L2 and hybridizes first with the L2 toehold. Toehold hybridization propels the unzipping of L2 from SA1 and SA2, which eliminates the crosslink and reduces the gel stiffness.
In this report and video, step-by-step instructions are provided for the preparation of stiffening and softening DNA gels. While 100% and 80% gel preparations are described, this protocol can be tailored to create DNA gels of other initial and final crosslinked percentages. In general, 100% and 80% gels are prepared, immobilized onto glass cover slips, functionalized, and seeded with cells. L2 is added to the media of 80% gels and R2 is added to the media of 100% gels, 48 hr after plating. The addition of L2 to media stiffens 80% gels to 100% crosslinked, whereas the addition of R2 to media softens 100% gels to 80% crosslinked. Stiffened gels are designated as 80→100% gels and softened gels are designated as 100→80% gels in the text. For control or static gels, ssDNA consisting of Ts or As is delivered to another set of 100% and 80% gels. After a minimum of two days following elasticity modulation, cells can be processed and analyzed.
DNA crosslink | # of bases | Sequence (Toehold) | Modification | Melting temperature (Tm, °C) | Comments | |
5'→3' | ||||||
Design 1 | SA1 | 10 | GCA CCT TTG C | 5' Acrydite | 34.9 | |
SA2 | 10 | GTC AGA ATG A | 5' Acrydite | 23.6 | ||
L2 | 30 | TCA TTC TGA CGC AAA GGT GCG CTA CAC TTG | 56 | A 10 bp toehold sequence is included. | ||
R2 | 30 | CAA GTG TAG CGC ACC TTT GCG TCA GAA TGA | R2 is complementary to L2 | |||
Design 2 | SA1 | 14 | CGT GGC ATA GGA CT | 5' Acrydite | 46.9 | |
SA2 | 14 | GTT TCC CAA TCA GA | 5' Acrydite | 40.2 | ||
L2 | 40 | TCT GAT TGG GAA ACA GTC CTA TGC CAC GGT TAC CTT CAT C | 65.9 | A 12 bp sequence toehold is included. | ||
R2 | 40 | GAT GAA GGT AAC CGT GGC ATA GGA CTG TTT CCC AAT CAG A | 65.9 | R2 is complementary to L2 | ||
Design 3 | SA1 | 20 | ACG GAG GTG TAT GCA ATG TC | 5' Acrydite | 55 | |
SA2 | 20 | CAT GCT TAG GGA CGA CTG GA | 5' Acrydite | 56.6 | ||
L2 | 40 | TCC AGT CGT CCC TAA GCA TGG ACA TTG CAT ACA CCT CCG T | 68.8 | Toehold is not included. | ||
Control | Control | 20-40 | AAA AAA (etc.) or | |||
TTT TTT (etc.) |
Table 1. Base sequences for ssDNA 9-11,13,14,18,21. Cellular and mechanical studies have utilized several different crosslink designs to generate DNA gels with a range of static and dynamic mechanical properties. The parameters modulated in crosslink design are base sequence and sequence length or crosslink length. Bold and italicized fonts illustrate base pairing between SA1 and L2 and between SA2 and L2, respectively.
Design | ||||||||
1 | 2 | 3 | ||||||
Acrylamide Concentration (%) | 10 | 10 | 10 | 4 | ||||
SA1 plus SA2 hybridized to L2 (% crosslinked) | 50 | 80 | 100 | 50 | 80 | 100 | 100 | 100 |
Elasticity (kPa, Mean±SEM) | 6.6 ± 0.6 | 17.1 ± 0.8 | 29.8 ± 2.5 | 5.85± 0.62 | 12.67 ± 1.33 | 22.88 ± 2.77 | 25.2 ± 0.5 | 10.4 ± 0.6 |
Table 2. Young’s modulus (E) of DNA gels 9-11,13,14,18,21. Acrylamide concentration, crosslink percentage, and crosslink length can be modulated in DNA gels. Designs 1, 2, and 3 have 20, 28, and 40 bp crosslink lengths, respectively. 100% gels for all designs have similar moduli indicating crosslink length does not affect gel elasticity. However, variations in acrylamide concentration alter DNA gel elasticity.
Access restricted. Please log in or start a trial to view this content.
NOTE: The entire protocol from gel preparation to cell processing takes a minimum of six days. Estimated time for gel preparation is 8 hr plus an O/N incubation. Estimated time for gel immobilization and DNA annealing is 8 hr plus an O/N rinsing step. Estimated time for gel functionalization is 2 hr. Time for cell plating and growth is dependent on culture type and application, but a minimum of four days is required.
1. Preparation of DNA Gels
NOTE: Prepare DNA gels in three distinct steps. First, individually polymerize SA1 and SA2 ssDNA into a PA backbone. These solutions are called SA1 polymerized solution and SA2 polymerized solution, respectively (§1.1). Second, dissolve the crosslinker, reversible strand, and control ssDNAs. Dissolve the lyophilized L2 ssDNA (crosslinker). This is called 100% L2 solution and is used to fabricate 100% gels (§1.2). Dilute an aliquot of 100% L2 solution to 80%. This is called 80% L2 solution and is used to fabricate 80% gels. Dissolve lyophilized R2 (reversible strand) and control ssDNA to use in §4. Third, mix SA1 polymerized solution, SA2 polymerized solution, and 100% or 80% L2 solution in a ratio of 10:10:6 (SA1:SA2:L2) to form 100% and 80% gels, respectively. (§1.3).
1. Preparation of SA1 and SA2 Polymerized Solutions
Solution | Stock Concentration of Solution | Percentage of Stock Solution in SA1 or SA2 Polymerized Solution (v/v) | Final Concentration of Solution in SA1 or SA2 Polymerized Solution |
Acrylamide (No-Bisacrylamide) | 40% | 25 | 10% |
SA1 or SA2 solution | 100% | 60 | 60% |
TBE buffer | 10x | 10 | 1x |
TEMED | 20% | 2.5 | 0.50% |
APS | 2% | 2.5 | 0.05% |
Table 3. Percentage of solutions for fabricating SA1 or SA2 polymerized solutions. The first column shows the solutions for formulating the DNA gels. The second column shows the stock concentrations of these solutions. The third column shows the percentage of the stock solutions in SA1 or SA2 polymerized solutions (v/v). The last column reflects the final concentrations in SA1 and SA2 solutions.
Solution Components | |||||||
Solution | Stock Concentration | Final Solution Concentration | Calculation | Amount to Add | Comments | ||
ssDNA solutions (§1.1) | |||||||
SA1 solution | 320.7 nmol of lyophilized SA1 ssDNA | 3.00 mM | 320.7 nmol / 3.00 nmol μl-1 = 107 µl | 107 µl of TE buffer to lyophilized ssDNA | SA1 solution is 60% of SA1 polymerized solution. | ||
107 µl / 0.600 = 178 µl | |||||||
178 µl is the total volume of SA1 polymerized solution (Table 3). | |||||||
SA2 solution | 324.4 nmol of lyophilized SA2 ssDNA | 3.00 mM | 324.4 nmol / 3.00 nmol μl-1 = 108 µl | 108 µl of TE buffer to lyophilized ssDNA | SA2 solution is 60% of SA2 polymerized solution. | ||
108 µl / 0.600 = 180 µl | |||||||
180 µl is the total volume of SA2 polymerized solution (Table 3). | |||||||
100% L2 solution | 657.4 nmol of lyophilized L2 ssDNA | 3.00 mM | 657.4 nmol / 3.00 nmol μl-1 = 219 µl | 219 µl of TE buffer to lyophilized ssDNA | Dilute an aliquot of 100% L2 to 80% L2 solution | ||
80% L2 solution | 80 µl of 100% L2 ssDNA | 80% | — | 20 µl of TE buffer to 80 µl of 100% L2 solution | |||
Control solution | 332.6 nmol of lyophilized poly T or A ssDNA | 3.00 mM | 332.6 nmol / 3.00 nmol μl-1 = 111 µl | 111 µl of TE buffer to lyophilized ssDNA | |||
R2 solution | 193.8 nmol of lyophilized R2 ssDNA | 3.00 mM | 193.8 nmol / 3.00 nmol μl-1 = 64.6 µl | 64.6 µl of TE buffer to lyophilized ssDNA | |||
Polymerized solutions (§1.2) | |||||||
SA1 polymerized solution | 40% acrylamide | 10% | 178 µl x 0.25 = 44.5 µl | 45 µl | Calculate the amount of acrylamide, TBE, APS, and TEMED based on a total volume of 178 µl (see above and Table 3). | ||
10x TBE | 1x | 178 µl x 0.10 = 17.8 µl | 18 µl | ||||
100% SA1 solution | 60% | — | 107 µl | SA1 solution is 60% of the SA1 polymerized solution (see above and Table 3). | |||
2% APS | 0.05% | 178 µl x 0.025 = 4.45 µl | 4.5 µl | Add and mix APS before adding TEMED. | |||
20% TEMED | 0.50% | 178 µl x 0.025 = 4.45 µl | 4.5 µl | ||||
SA2 polymerized solution | 40% acrylamide | 10% | 180 µl x 0.25 = 45 µl | 45 µl | Calculate the amount of acrylamide, TBE, APS, and TEMED based on a total volume of 180 µl (see above and Table 3). | ||
10x TBE | 1x | 180 µl x 0.10 = 18 µl | 18 µl | ||||
100% SA2 solution | 60% | — | 108 µl | SA2 solution is 60% of the SA2 polymerized solution (see above and Table 3). | |||
2% APS | 0.05% | 180 µl x 0.025 = 4.5 µl | 4.5 µl | Add and mix APS before adding TEMED | |||
20% TEMED | 0.50% | 180 µl x 0.025 = 4.5 µl | 4.5 µl | ||||
Gel solutions (§1.3) | |||||||
100% Gel solution | 100% SA1 polymerized solution | 10 parts | — | 10 µl | Compose 100% gels with the following SA1:SA2:L2 ratio, 10:10:6. | ||
100% SA2 polymerized solution | 10 parts | — | 10 µl | ||||
100% L2 solution | 6 parts | — | 6 µl | ||||
80% Gel solution | 100% SA1 polymerized solution | 10 parts | — | 10 µl | Compose 80% gels with the following SA1:SA2:L2 ratio, 10:10:6. | ||
100% SA2 polymerized solution | 10 parts | — | 10 µl | ||||
80% L2 solution | 6 parts | — | 6 µl | ||||
Dynamic gels (§3-4) | |||||||
80→100% gel | 80% gel | 100% gel | Calculation 1: | 1 µl of 100% L2 solution into culture media | Calculations are based on having 20 µl gels on cover slips. First, convert the parts of 100% L2 solution in the 20 µl of gel into µl. Second, calculate the amount (in µl) of 100% L2 solution needed for an additional 20% of crosslinking. Add this amount of 100% L2 solution to gel. | ||
(20 µl / 26 parts) x 6 parts = 4.6 µl | |||||||
Calculation 2: | |||||||
5 µl x 0.2 = 1 µl | |||||||
100→80% gel | 100% gel | 80% gel | Calculation 1: | 1 µl of 100% R2 solution into culture media | Calculations are based on having 20 µl gels on cover slips. First, convert the parts of 100% L2 solution in the 20 µl of gel into µl. Second, calculate the amount (in µl) of 100% L2 solution needed to be removed to compose a 20% gel. Add this amount of R2 solution to gel. | ||
(20 µl / 26 parts) x 6 parts = 4.6 µl | |||||||
Calculation 2: | |||||||
5 µl x 0.2= 1 µl | |||||||
100% gel (Control) | 100% gel | 100% gel | — | 1 µl of control solution into culture media | Amount of control solution is equivalent to the amount of R2 solution added. | ||
80% gel (Control) | 80% gel | 80% gel | — | 1 µl of control solution into culture media | Amount of control solution is equivalent to the amount of 100% L2 solution added. |
Table 4. Example calculations for DNA gel preparation. Mock numbers are provided to illustrate the calculations for the preparation of 80%, 100%, 100→80%, and 80→100% gels. DNA gels are Design 2 in Table 1.
2. Preparation of L2, R2, and Control Solutions
3. Preparation of Gel Solutions
2. Gel Immobilization on Glass
NOTE: Immobilize aliquots of 100% or 80% gels onto glass cover slips (Figure 2).
Figure 2. Schematic of gel immobilization and functionalization. After DNA gels (grey) are prepared, gels are attached to glass cover slips (white) by optical glue (green). Gels are simultaneously cured and sterilized by UV light. After swelling, gels are approximately 1-mm thick. Next, gels are functionalized in a two-step process (red outlined box). First, sulfo-SANPAH is conjugated to acrylamide on the gel surfaces by UV light exposure. Second, gels are incubated with collagen or poly-D-lysine, which attaches to the sulfo-N-hydroxysuccinimide ester in sulfo-SANPAH. This figure has been modified from 10.
3. Gel Functionalization
NOTE: DNA gel functionalization is required for cell adhesion since polyacrylamide gels are inert materials (Figure 2). In this section, gels will be functionalized in two-steps. First, N-Sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino) hexanoate or sulfo-SANPAH will be covalently linked by photolysis of nitrophenyl azide group to the polyacrylamide backbone of the DNA gels. Second, primary amines in collagen or poly-D-lysine will attach to the sulfo-N-hydroxysuccinimide ester in sulfo-SANPAH to attach the proteins to the gel surface.
4. Cell Culturing and Imaging
NOTE: In this section, we provide details regarding the softening or stiffening of gels after cell plating. A detailed cell culturing protocol is not provided for several reasons. First, numerous cell types can adhere onto DNA gels and each cell type will require specific adjustments by the researcher for cell plating. Second, standard cell and tissue culturing techniques are used for these experiments and can be found in numerous original articles, technical articles, and reference books. Techniques for specifically plating fibroblasts and neurons onto DNA gels can be found in previous publications 9-11,19-21.
Access restricted. Please log in or start a trial to view this content.
Prior to our studies, cell-ECM interactions were observed on static compliant biomaterials or on irreversible and unidirectional dynamic substrates. These substrates do not accurately reflect the dynamic nature of the cellular microenvironment. Our work shifts the existing technical paradigms by providing a more physiologic model for studying cell-ECM interactions on softening and stiffening dynamic biomaterials. In previous studies, we analyzed the effects of dynamic substrates on cells by examining various cell morphol...
Access restricted. Please log in or start a trial to view this content.
The ability of DNA gels to soften or stiffen before and after cell adhesion makes them an ideal model to study the role of dynamic tissue stiffness on cell function. All three designs have been used in mechanical and biological studies. However, all three designs have similar elasticities at various crosslink percentages, indicating crosslink length does not influence DNA gel elasticity (Table 2). In contrast, acrylamide concentration affects elasticity. These designs may differ in crosslinking kinetics ...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors would like to thank: Dr. Frank Jiang, Dr. David Lin, Dr. Bernard Yurke and Dr. Uday Chippada for their contributions on developing the DNA gel technology; Dr. Norell Hadzimichalis, Smit Shah, Kimberly Peterman, Robert Arter for their comments and edits of this manuscript; funding sources including the New Jersey Commission on Spinal Cord Research (Grant #07A-019-SCR1, N.A.L.) and New Jersey Neuroscience Institute (M.L.P.); and publishers of Tissue Engineering, Part A for permission to reprint Figures 2 and 4 and Biomaterials for permission to reprint Figure 3.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
ssDNA | Integrated DNA Technologies (Coralville, Iowa) idtdna.com | Do not vortex ssDNA. Gentle invert the vial and/or pipette solution to mix. | |
PBS with calcium and magnesium | Any brand. | ||
100x Tris-EDTA buffer (TE buffer) | Sigma-Aldrich (St. Loius, MO) sigmaldrich.com | T9285 | |
10x Tris-Borate-EDTA buffer (TBE buffer) | Sigma-Aldrich (St. Loius, MO) | 93290 | TBE is a reproductive toxin. |
40% Acrylamide solution | Fisher Scientific (Pittsburg, PA) | BP14021 | Acrylamide is a toxin. |
Ammonium persulfate (APS) | Sigma-Aldrich (St. Loius, MO) | A3678 | Prepare a 2% solution in TE buffer. APS is a toxin and irratant. |
Tetramethylethylenediamine (TEMED) | Sigma-Aldrich (St. Loius, MO) | T9281 | Prepare a 20% solution in TE buffer. TEMED is flammable, a corrosive, and a toxin. |
12 mm diameter round coverglass | Fisher Scientific (Pittsburg, PA) fishersci.com | 12-545-82 | |
Norland optical adhesive 72 | Norland Products (Cranbury, NJ) norlandprod.com | NOA72 | |
24-well tissue culture plate | Any brand. | ||
Microcentrifuge tubes | Any brand. | ||
Sulfo-SANPAH | ProteoChem or Thermo Fisher, (Rockland, IL) proteochem.com or thermofisher.com | C111 or 22589 | Prepare a 0.315 mg/ml solution in water immediately before use. Dissolve at 37 °C and filter sterilze. It is normal to observe undisolved sulfo-SANPAH in the filter. Sulfo-SANPAH is light sensitive and, therefore, the solution should be protect from light until UV exposure. |
Poly-D-Lysine (PDL) | Sigma-Aldrich (St. Loius, MO) | P6407 | Prepare a 0.2 mg/ml solution in water and filter sterilize. |
Collagen Type I | Affymetrix (Santa Clara, CA) affymetrix.com | 13813 | Prepare a 0.2 mg/ml solution in 0.2 N acetic acid. Solution needs to remain cold at all times to avoid polymerization. Acetic acid is a flammable, toxic, and corrosive. |
22 x 60 cover glass | Fisher Scientific (Pittsburg, PA) | 12-544-G | |
Positive-displacement pipette | Gilson, Inc (Middletown, WI) gilson.com | F148504 | |
Heat block | Fisher Scientific (Pittsburg, PA) | 11-718 | |
UV light source | Place gels as close as possible to the UV light. UV light can cause skin or eye injury. | ||
Thermometer | Any brand. | ||
Nitrogen gas | GTS-Welco (Flemington, NJ) www.praxairmidatlantic.com/ | NI 5.0UH-R |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved