JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Our laboratory has developed DNA-crosslinked polyacrylamide hydrogels, a dynamic hydrogel system, to better understand the effects of modulating tissue stiffness on cell function. Here, we provide schematics, descriptions, and protocols to prepare these hydrogels.

Abstract

Mechanobiology is an emerging scientific area that addresses the critical role of physical cues in directing cell morphology and function. For example, the effect of tissue elasticity on cell function is a major area of mechanobiology research because tissue stiffness modulates with disease, development, and injury. Static tissue-mimicking materials, or materials that cannot alter stiffness once cells are plated, are predominately used to investigate the effects of tissue stiffness on cell functions. While information gathered from static studies is valuable, these studies are not indicative of the dynamic nature of the cellular microenvironment in vivo. To better address the effects of dynamic stiffness on cell function, we developed a DNA-crosslinked polyacrylamide hydrogel system (DNA gels). Unlike other dynamic substrates, DNA gels have the ability to decrease or increase in stiffness after fabrication without stimuli. DNA gels consist of DNA crosslinks that are polymerized into a polyacrylamide backbone. Adding and removing crosslinks via delivery of single-stranded DNA allows temporal, spatial, and reversible control of gel elasticity. We have shown in previous reports that dynamic modulation of DNA gel elasticity influences fibroblast and neuron behavior. In this report and video, we provide a schematic that describes the DNA gel crosslinking mechanisms and step-by-step instructions on the preparation DNA gels.

Introduction

Static and dynamic substrates are two categories of biomaterials that were developed to study the effects of tissue elasticity or stiffness on cell function. Static substrates are unable to change their physical properties after they are fabricated and/or once cells are plated. Polyacrylamide (PA) gels were the first two-dimensional, static substrates that were synthesized for mechanobiology investigations 5,17. PA gels are easy to prepare, inexpensive, versatile, and can be fabricated with a broad range of elastic moduli. Although these technical advantages make PA gels a commonly applied substrate, static substrates are not indicative of the dynamic nature of the extracellular matrix (ECM) and surrounding cellular environment in vivo. For example, the ECM undergoes stiffness alterations as a result of injury, development, or disease. Dynamic substrates are therefore favored as tissue-mimicking substrate models in mechanobiology studies 22,24,25.

Numerous synthetic, natural, two-dimensional, three-dimensional, static, and dynamic biomaterials have been developed to mimic tissue stiffness 1,3,6,16,23,26. Some dynamic substrates require heat, UV, electrical current, ions, and pH changes to alter their mechanical properties 2,4,7,8,12,15,16, but these stimuli can restrict the hydrogel’s bio-application. DNA-crosslinked polyacrylamide hydrogels (DNA gels) are dynamic two-dimensional elastic substrates. DNA crosslinks allow for temporal, spatial, and reversible modulation of DNA gel stiffness by addition of single-stranded DNA (ssDNA) to media or buffer 9-11,13,14,18,21. Unlike the aforementioned dynamic gels where stimuli are applied for modulation of elasticity, the DNA gels rely on the diffusion of applied ssDNA for the alteration of elasticity. Therefore, the upper gel surface, where cells are grown, is the first area modulated because the rate of elasticity modulation is dependent on the gel thickness.

DNA gels are similar to their PA gel counterparts in that they have a polyacrylamide backbone, however the bis-acrylamide crosslinks are replaced with crosslinks composed of DNA (Figure 1). Two ssDNAs (SA1 and SA2) hybridize with a crosslinker strand (L2) to make up the DNA crosslinks of the gel. SA1 and SA2 have distinct sequences that both contain an Acrydite modification at the 5´ end for effective incorporation into the PA network. For preparation of the gels, SA1 and SA2 are individually polymerized into a PA backbone and, subsequently, the polymerized SA1 and SA2 are mixed together. L2, the crosslinker, is added to the SA1 and SA2 mixture. The L2 base sequence is complementary to both SA1 and SA2 sequences and L2 hybridizes with SA1 plus SA2 to form the DNA crosslinks. Initial, DNA gel elasticity is determined by both L2 concentrations and crosslinking (Tables 1 and 2). DNA gels containing equal stoichiometric amounts of L2, SA1, and SA2 are the stiffest gels because SA1 and SA2 are 100% crosslinked by L2 (designated as 100% gels). Lower concentrations of L2 result in a lower percentage of DNA crosslinking and, therefore, softer DNA gels. Gels as low as 50% crosslinked (designated as 50% gels) have been constructed 9-11.

figure-introduction-3468
Figure 1. DNA gel crosslinking and uncrosslinking schematic 9-11,13,14,18,21Step 1: SA1 (red) and SA2 (blue) are individually polymerized into a polyacrylamide backbone (black). After polymerization, SA1 and SA2 polymerized solutions are mixed together. Step 2: L2 (green) is added and hybridizes with SA1 plus SA2 to form the crosslinks of the gel. Step 3: R2 hybridizes with the toehold of L2. Step 4: Toehold hybridization of R2 propels the unzipping of L2 from SA1 and SA2.

Unlike PA gels, DNA gels can stiffen and soften after synthesis. For that reason, cells grown on DNA gels can be subjected to dynamic stiffness alterations. To stiffen cell-adherent gels, L2 can be added to the culture media of low percentage gels to increase the percentage of crosslinks. To soften cell-adherent gels, L2 can be removed to decrease the percentage of crosslinks 10,13,21. L2 has an additional toehold sequence at the 3´ end to allow L2 to uncrosslink from SA1 and SA2 (Table 1). Removal of L2 is accomplished by hybridization of a reversal strand called R2. R2 is complementary to the full length of L2 and hybridizes first with the L2 toehold. Toehold hybridization propels the unzipping of L2 from SA1 and SA2, which eliminates the crosslink and reduces the gel stiffness.

In this report and video, step-by-step instructions are provided for the preparation of stiffening and softening DNA gels. While 100% and 80% gel preparations are described, this protocol can be tailored to create DNA gels of other initial and final crosslinked percentages. In general, 100% and 80% gels are prepared, immobilized onto glass cover slips, functionalized, and seeded with cells. L2 is added to the media of 80% gels and R2 is added to the media of 100% gels, 48 hr after plating. The addition of L2 to media stiffens 80% gels to 100% crosslinked, whereas the addition of R2 to media softens 100% gels to 80% crosslinked. Stiffened gels are designated as 80→100% gels and softened gels are designated as 100→80% gels in the text. For control or static gels, ssDNA consisting of Ts or As is delivered to another set of 100% and 80% gels. After a minimum of two days following elasticity modulation, cells can be processed and analyzed.

DNA crosslink# of basesSequence (Toehold)ModificationMelting temperature (Tm, °C)Comments
5'→3'
Design 1SA110GCA CCT TTG C5' Acrydite34.9
SA210GTC AGA ATG A5' Acrydite23.6
L230TCA TTC TGA CGC AAA GGT GCG CTA CAC TTG56A 10 bp toehold sequence is included. 
R230CAA GTG TAG CGC ACC TTT GCG TCA GAA TGAR2 is complementary to L2
Design 2SA114CGT GGC ATA GGA CT5' Acrydite46.9
SA214GTT TCC CAA TCA GA5' Acrydite40.2
L240TCT GAT TGG GAA ACA GTC CTA TGC CAC GGT TAC CTT CAT C65.9A 12 bp sequence toehold is included. 
R240GAT GAA GGT AAC CGT GGC ATA GGA CTG TTT CCC AAT CAG A65.9R2 is complementary to L2
Design 3SA120ACG GAG GTG TAT GCA ATG TC5' Acrydite55
SA220CAT GCT TAG GGA CGA CTG GA5' Acrydite56.6
L240TCC AGT CGT CCC TAA GCA TGG ACA TTG CAT ACA CCT CCG T68.8Toehold is not included.
ControlControl20-40AAA AAA (etc.) or
TTT TTT (etc.)

Table 1. Base sequences for ssDNA 9-11,13,14,18,21. Cellular and mechanical studies have utilized several different crosslink designs to generate DNA gels with a range of static and dynamic mechanical properties. The parameters modulated in crosslink design are base sequence and sequence length or crosslink length. Bold and italicized fonts illustrate base pairing between SA1 and L2 and between SA2 and L2, respectively.

Design
123
Acrylamide Concentration (%)1010104
SA1 plus SA2 hybridized to L2 (% crosslinked)50801005080100100100
Elasticity (kPa, Mean±SEM)6.6 ± 0.617.1 ± 0.829.8 ± 2.55.85± 0.6212.67 ± 1.3322.88 ± 2.7725.2 ± 0.510.4 ± 0.6

Table 2. Young’s modulus (E) of DNA gels 9-11,13,14,18,21. Acrylamide concentration, crosslink percentage, and crosslink length can be modulated in DNA gels. Designs 1, 2, and 3 have 20, 28, and 40 bp crosslink lengths, respectively. 100% gels for all designs have similar moduli indicating crosslink length does not affect gel elasticity. However, variations in acrylamide concentration alter DNA gel elasticity.

Access restricted. Please log in or start a trial to view this content.

Protocol

NOTE: The entire protocol from gel preparation to cell processing takes a minimum of six days. Estimated time for gel preparation is 8 hr plus an O/N incubation. Estimated time for gel immobilization and DNA annealing is 8 hr plus an O/N rinsing step. Estimated time for gel functionalization is 2 hr. Time for cell plating and growth is dependent on culture type and application, but a minimum of four days is required.

1. Preparation of DNA Gels

NOTE: Prepare DNA gels in three distinct steps. First, individually polymerize SA1 and SA2 ssDNA into a PA backbone. These solutions are called SA1 polymerized solution and SA2 polymerized solution, respectively (§1.1). Second, dissolve the crosslinker, reversible strand, and control ssDNAs. Dissolve the lyophilized L2 ssDNA (crosslinker). This is called 100% L2 solution and is used to fabricate 100% gels (§1.2). Dilute an aliquot of 100% L2 solution to 80%. This is called 80% L2 solution and is used to fabricate 80% gels. Dissolve lyophilized R2 (reversible strand) and control ssDNA to use in §4. Third, mix SA1 polymerized solution, SA2 polymerized solution, and 100% or 80% L2 solution in a ratio of 10:10:6 (SA1:SA2:L2) to form 100% and 80% gels, respectively. (§1.3).

1. Preparation of SA1 and SA2 Polymerized Solutions

  1. Select and order the appropriate SA1, SA2, L2, and R2 base sequences from Tables 1 and 2. Base sequences and sequence length were optimized in previous reports 9-11,13,14.
  2. Calculate all solution formulations (Tables 3-4). NOTE: Meticulously document calculations for troubleshooting purposes. Construction of an Excel template is recommended and can be used repeatedly for DNA gel preparation. Please see Tables 3 and 4 for an example of the tabulation for Design 2 (Tables 1 and 2). The volumes specified in Table 4 will be used throughout this protocol but volumes will vary with every aliquot of lyophilized ssDNA.
SolutionStock Concentration of SolutionPercentage of Stock Solution in SA1 or SA2 Polymerized Solution (v/v)Final Concentration of Solution in SA1 or SA2 Polymerized Solution
Acrylamide (No-Bisacrylamide)40%2510%
SA1 or SA2 solution100%6060%
TBE buffer10x101x
TEMED20%2.50.50%
APS2%2.50.05%

Table 3. Percentage of solutions for fabricating SA1 or SA2 polymerized solutions. The first column shows the solutions for formulating the DNA gels. The second column shows the stock concentrations of these solutions. The third column shows the percentage of the stock solutions in SA1 or SA2 polymerized solutions (v/v). The last column reflects the final concentrations in SA1 and SA2 solutions.

Solution Components
SolutionStock Concentration Final Solution ConcentrationCalculationAmount to AddComments
ssDNA solutions (§1.1)
SA1 solution320.7 nmol of lyophilized SA1 ssDNA3.00 mM320.7 nmol / 3.00 nmol μl-1 = 107 µl107 µl of TE buffer to lyophilized ssDNASA1 solution is 60% of SA1 polymerized solution.  
107 µl / 0.600 = 178 µl
178 µl is the total volume of SA1 polymerized solution (Table 3).
SA2 solution324.4 nmol of lyophilized SA2 ssDNA3.00 mM324.4 nmol / 3.00 nmol μl-1 = 108 µl108 µl of TE buffer to lyophilized ssDNASA2 solution is 60% of SA2 polymerized solution.
108 µl / 0.600 = 180 µl
180 µl is the total volume of SA2 polymerized solution (Table 3).
100% L2 solution657.4 nmol of lyophilized L2 ssDNA3.00 mM657.4 nmol / 3.00 nmol μl-1 = 219 µl219 µl of TE buffer to lyophilized ssDNADilute an aliquot of 100% L2 to 80% L2 solution
80% L2 solution80 µl of 100% L2 ssDNA80%20 µl of TE buffer to 80 µl of 100% L2 solution
Control solution332.6 nmol of lyophilized poly T or A ssDNA3.00 mM332.6 nmol / 3.00 nmol μl-1 = 111 µl111 µl of TE buffer to lyophilized ssDNA
R2 solution193.8 nmol of lyophilized R2 ssDNA3.00 mM193.8 nmol / 3.00 nmol μl-1 = 64.6 µl64.6 µl of TE buffer to lyophilized ssDNA
Polymerized solutions (§1.2)
SA1 polymerized solution40% acrylamide10%178 µl x 0.25 = 44.5 µl45 µlCalculate the amount of acrylamide, TBE, APS, and TEMED based on a total volume of 178 µl (see above and Table 3).
10x TBE1x178 µl x 0.10 = 17.8 µl18 µl
100% SA1 solution60%107 µlSA1 solution is 60% of the SA1 polymerized solution (see above and Table 3).
2% APS0.05%178 µl x 0.025 = 4.45 µl4.5 µlAdd and mix APS before adding TEMED.
20% TEMED0.50%178 µl x 0.025 = 4.45 µl4.5 µl
SA2 polymerized solution40% acrylamide10%180 µl x 0.25 = 45 µl45 µlCalculate the amount of acrylamide, TBE, APS, and TEMED based on a total volume of 180 µl (see above and Table 3).
10x TBE1x180 µl x 0.10 = 18 µl18 µl
100% SA2 solution60%108 µlSA2 solution is 60% of the SA2 polymerized solution (see above and Table 3).
2% APS0.05%180 µl x 0.025 = 4.5 µl4.5 µlAdd and mix APS before adding TEMED
20% TEMED0.50%180 µl x 0.025 = 4.5 µl4.5 µl
Gel solutions (§1.3)
100% Gel solution100% SA1 polymerized solution10 parts10 µlCompose 100% gels with the following SA1:SA2:L2 ratio, 10:10:6.
100% SA2 polymerized solution10 parts10 µl
100% L2  solution6 parts6 µl
80% Gel solution100% SA1 polymerized solution10 parts10 µlCompose 80% gels with the following SA1:SA2:L2 ratio, 10:10:6.
100% SA2 polymerized solution10 parts10 µl
80% L2 solution6 parts6 µl
Dynamic gels (§3-4)
80→100% gel80% gel100% gelCalculation 1:1 µl of 100% L2 solution into culture mediaCalculations are based on having 20 µl gels on cover slips. First, convert the parts of 100% L2 solution in the 20 µl of gel into µl. Second, calculate the amount (in µl) of 100% L2 solution needed for an additional 20% of crosslinking. Add this amount of 100% L2 solution to gel.
(20 µl / 26 parts) x 6 parts = 4.6 µl
Calculation 2:
5 µl x 0.2 = 1 µl
100→80% gel100% gel80% gelCalculation 1:1 µl of 100% R2 solution into culture mediaCalculations are based on having 20 µl gels on cover slips. First, convert the parts of 100% L2 solution in the 20 µl of gel into µl. Second, calculate the amount (in µl) of 100% L2 solution needed to be removed to compose a 20% gel. Add this amount of R2 solution to gel.
(20 µl / 26 parts) x 6 parts = 4.6 µl
Calculation 2:
5 µl x 0.2= 1 µl
100% gel (Control)100% gel100% gel1 µl of control solution into culture mediaAmount of control solution is equivalent to the amount of R2 solution added.
80% gel (Control)80% gel80% gel1 µl of control solution into culture mediaAmount of control solution is equivalent to the amount of 100% L2 solution added.

Table 4. Example calculations for DNA gel preparation. Mock numbers are provided to illustrate the calculations for the preparation of 80%, 100%, 100→80%, and 80→100% gels. DNA gels are Design 2 in Table 1.

  1. Centrifuge lyophilized SA1 ssDNA at 2,000 x g for 15 sec to ensure all ssDNA is at the bottom of the vial. NOTE: Proper concentration of SA1 solution is critical for DNA gel synthesis.
  2. Prepare 3 mM of SA1 solution by adding 107 µl of 1x Tris-EDTA, pH 8.0 buffer (TE buffer) to the vial (Tables 3-4).
  3. Heat SA1 in TE buffer at 70 °C for 5 min or until ssDNA pellet is completely dissolved. NOTE: Heating temperature should be a minimum of 5 °C above melting temperature (Tm) to ensure DNA is in a single-stranded state.
  4. Prepare SA1 polymerization solution by adding 40% acrylamide and 10x Tris-Borate-EDTA (TBE) buffer at the indicated percentages (Table 3). In this example, add 45 and 18 µl, respectively, to 107 µl of SA1 solution (Table 4).  
  5. Degas with nitrogen gas for 3 min to facilitate mixing. Insert a p200 tip attached to a nitrogen gas source into the solution and slowly allow nitrogen gas to pass through the solution. Test the flow rate of nitrogen gas in water prior to degassing SA1 solution to prevent splatter.
  6. Centrifuge for 15 sec at 2,000 x g to gather solution.
  7. Add 4.5 µl of 2% ammonium persulfate (APS, Tables 3-4) to initiate gel polymerization.
  8. Invert the tube several times to mix.
  9. Centrifuge for 15 sec at 2,000 x g to gather solution for homogenous polymerization.
  10. Add 4.5 µl of 20% tetramethylethylenediamine (TEMED, Tables 3-4) to catalyze polymerization.
  11. Invert the tube several times to mix.
  12. Centrifuge for 15 sec at 2,000 x g to gather solution for homogenous polymerization.
  13. Degas with nitrogen gas for 3-5 min to complete polymerization and minimize un-reacted monomers.
  14. Incubate solution for 10 min at RT to complete polymerization. NOTE: This solution is called SA1 polymerized solution.
  15. Repeat steps 1.1.3-1.1.16 with lyophilized SA2 ssDNA, but add 45, 18, 4.5, and 4.5 µl of acrylamide, TBE, APS, and TEMED, respectively, to 108 µl of SA2 solution (Tables 3-4). NOTE: SA1 and SA2 polymerized solutions can be stored at 4 °C for up to one month.

2. Preparation of L2, R2, and Control Solutions

  1. Repeat steps 1.1.3-1.1.5 with lyophilized R2 ssDNA but add 64.4 µl of TE buffer (Table 4).
  2. Repeat steps 1.1.3-1.1.5 with lyophilized control ssDNA but add 111 µl of TE buffer (Table 4).
  3. Repeat steps 1.1.3-1.1.5 with lyophilized L2 ssDNA but add 219 µl of TE buffer (Table 4). NOTE: This is 100% L2 solution. Adding 100% L2 solution to SA1 and SA2 polymerized solutions (see §1.3) will form a 100% crosslinked DNA gel (100% gel) because SA1, SA2, and L2 will be stoichiometrically equivalent.
  4. Dilute an aliquot of 100% L2 solution to 80% by adding 20 µl of 1x TE buffer to 80 µl of 100% L2 solution (Table 4). NOTE: This solution is 80% L2 solution. Adding 80% L2 solution to SA1 and SA2 polymerized solutions (see §1.3) will form an 80% crosslinked DNA gel (80% gel) because only 80% of SA1 and SA2 will be crosslinked to L2. Solutions can be stored at 4 °C for up to one month.

3. Preparation of Gel Solutions

  1. Heat SA1 and SA2 polymerized solutions at 70 °C until solution viscosity is reduced (about 1 min). Raise the temperature up to 80 °C if solution is still too viscous to pipette.
  2. Add 10 µl or 10 parts of SA1 polymerized solution to 10 µl or 10 parts of SA2 polymerized solution (Table 4). NOTE: SA1 and SA2 polymerized solutions are extremely viscous and difficult to pipette. Since concentrations are critical to gel formation, use a positive-displacement pipette from this point forward or see discussion for other handling techniques. Also, pipette in multiple, small aliquots (>20 µl) rather than a single, large volume. 
  3. Mix SA1 and SA2 polymerized solutions together via alternating heating (for 15 sec at 70 °C) and stirring (for 15 sec with a pipette tip) for a total of 1 min.
  4. Add 6 µl or 6 parts of 100% L2 solution to form a 100% gel (Table 4).
  5. Mix by alternating heating and stirring as described in step 1.3.3.
  6. Heat gel for 1 hr at the optimal annealing temperature (35 °C). Calculate annealing temperature by subtracting 5 °C from the ssDNA sequence with the lowest melting temperature (Table 1).
  7. Pipette the 100% gel into a 60-mm Petri dish.
  8. Allow DNA crosslinks to continue to rehybridize by incubating gel for 4 hr at RT.
  9. Cover gel with PBS containing calcium and magnesium and incubate O/N at RT. NOTE: Gels will swell about 3 times their initial volume. In addition, gels will equilibrate with buffer and excess acrylamide will diffuse out of the gels. Calcium and magnesium in the PBS stabilize DNA hybridization and prevent gel bursting (see Discussion for toubleshooting gel bursting).
  10. Remove remaining buffer from Petri dish.
  11. To fabricate 80% gels, repeat steps 1.3.1-1.3.10 but replace 100% L2 solution in step 1.3.4 with 80% L2 solution. Store 100% and 80% gels at 4 °C for up to one month. NOTE: The stiffness differences between 80% and 100% gels are physically distinguishable.

2. Gel Immobilization on Glass

NOTE: Immobilize aliquots of 100% or 80% gels onto glass cover slips (Figure 2).

  1. Heat 100% gel at 70 °C for about 30 sec or until gel is less viscous for pipetting.
  2. Place glass cover slips onto a 70 °C heat block and allow to heat for 1-2 min.
  3. Add a drop of optical adhesive to each glass cover slip.
  4. Add 20 µl of 100% gel to each glass cover slip (Table 4). NOTE: 10-30 µl can be dispensed on each cover slip.
  5. Allow gel to melt and spread over glass cover slip. NOTE: If gel topology does not appear even after melting, flatten gel with a siliconized glass cover slip. However, additional swelling will occur in subsequent steps and contribute to gel unevenness.
  6. Remove glass-containing gel from heat block and place into a 24-well tissue culture dish.
  7. Repeat steps 2.1-2.6 with 80% gel.
  8. Heat gels for 1 hr at the optimal annealing temperature (35 °C). NOTE: It is normal for gels to become dry and this will be resolved when gels are incubated in PBS.
  9. Expose plates containing 80% and 100% gels to ultraviolet (UV, 365 nm) light for 15 min. NOTE: UV exposure simultaneously cures glue and sterilizes gels. If a UV crosslinking chamber is not available, gels can be placed under a UV light that is equipped in a biological safety cabinet. After UV exposure, perform subsequent steps of this protocol under a biological safety cabinet to maintain gel sterility. Also, use sterile solutions from this point forward.
  10. Allow DNA crosslinks to rehybridize at RT for 4 hr.
  11. Add PBS and incubate O/N at 4 °C. NOTE: PBS incubation rinses, equilibrates, and swells gels again because repeated heating can dehydrate the gels.

figure-protocol-19958
Figure 2. Schematic of gel immobilization and functionalization. After DNA gels (grey) are prepared, gels are attached to glass cover slips (white) by optical glue (green). Gels are simultaneously cured and sterilized by UV light. After swelling, gels are approximately 1-mm thick. Next, gels are functionalized in a two-step process (red outlined box). First, sulfo-SANPAH is conjugated to acrylamide on the gel surfaces by UV light exposure. Second, gels are incubated with collagen or poly-D-lysine, which attaches to the sulfo-N-hydroxysuccinimide ester in sulfo-SANPAH. This figure has been modified from 10.

3. Gel Functionalization

NOTE: DNA gel functionalization is required for cell adhesion since polyacrylamide gels are inert materials (Figure 2). In this section, gels will be functionalized in two-steps. First, N-Sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino) hexanoate or sulfo-SANPAH will be covalently linked by photolysis of nitrophenyl azide group to the polyacrylamide backbone of the DNA gels. Second, primary amines in collagen or poly-D-lysine will attach to the sulfo-N-hydroxysuccinimide ester in sulfo-SANPAH to attach the proteins to the gel surface.

  1. Remove buffer in wells with a pipette and be careful not to aspirate the gel. NOTE: Do not perform vacuum aspiration to reduce the probability of aspirating the gel.
  2. Optional) Wash gels thrice for 15 min at RT to remove excess acrylamide monomer, TEMED, and APS.
  3. Add about 300 µl of sulfo-SANPAH to cover each gel.
  4. Expose gels to UV (365 nm) for 5 min.
  5. Remove sulfo-SANPAH.
  6. Rinse gels once with PBS to remove excess sulfo-SANPAH.
  7. Repeat steps 3.3-3.6.
  8. Incubate gels in about 300 µl of 0.2 mg/ml of poly-D-lysine for 1 hr at RT  or O/N at 4 °C. NOTE: Alternatively, incubate gels with 0.2 mg/ml of collagen type 1 O/N at 4 °C.
  9. Wash gels twice with PBS for 5 min to remove excess poly-D-lysine.
  10. Incubate gels in about 300 µl of media for 30 min to equilibrate gels.
  11. Remove media immediately before plating cells.

4. Cell Culturing and Imaging

NOTE: In this section, we provide details regarding the softening or stiffening of gels after cell plating. A detailed cell culturing protocol is not provided for several reasons. First, numerous cell types can adhere onto DNA gels and each cell type will require specific adjustments by the researcher for cell plating. Second, standard cell and tissue culturing techniques are used for these experiments and can be found in numerous original articles, technical articles, and reference books. Techniques for specifically plating fibroblasts and neurons onto DNA gels can be found in previous publications 9-11,19-21.

  1. Plate cells. For protocols regarding dissection and/or culturing of neurons or fibroblasts mentioned in this article, refer to one of the following publications 9-11,19-21.
  2. After a minimum of 48 hr, modulate gel stiffness by pipetting 1 µl of control, L2, or R2 solution close to the gel (Table 4).
    1. To stiffen gels from 80% to 100% crosslinked (80→100% gels), add the remaining 20% of L2 to 80% gels by adding 1 µl of 100% L2 solution close to the gel.
    2. To soften gels from 100% to 80% crosslinked (100→80% gels), add R2 to remove 20% of the crosslinks from 100% gels by adding 1 µl of 100% R2 solution close to the gel.
    3. For controls, add equal volumes of control solution to a subset of 100% and 80% gels by adding 1 µl of control solution close to the gel.
  3. Perform the desired cell processing and data analysis after a minimum of 48 hr.

Access restricted. Please log in or start a trial to view this content.

Results

Prior to our studies, cell-ECM interactions were observed on static compliant biomaterials or on irreversible and unidirectional dynamic substrates. These substrates do not accurately reflect the dynamic nature of the cellular microenvironment. Our work shifts the existing technical paradigms by providing a more physiologic model for studying cell-ECM interactions on softening and stiffening dynamic biomaterials. In previous studies, we analyzed the effects of dynamic substrates on cells by examining various cell morphol...

Access restricted. Please log in or start a trial to view this content.

Discussion

The ability of DNA gels to soften or stiffen before and after cell adhesion makes them an ideal model to study the role of dynamic tissue stiffness on cell function. All three designs have been used in mechanical and biological studies. However, all three designs have similar elasticities at various crosslink percentages, indicating crosslink length does not influence DNA gel elasticity (Table 2). In contrast, acrylamide concentration affects elasticity. These designs may differ in crosslinking kinetics ...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank: Dr. Frank Jiang, Dr. David Lin, Dr. Bernard Yurke and Dr. Uday Chippada for their contributions on developing the DNA gel technology; Dr. Norell Hadzimichalis, Smit Shah, Kimberly Peterman, Robert Arter for their comments and edits of this manuscript; funding sources including the New Jersey Commission on Spinal Cord Research (Grant #07A-019-SCR1, N.A.L.) and New Jersey Neuroscience Institute (M.L.P.); and publishers of Tissue Engineering, Part A for permission to reprint Figures 2 and 4 and Biomaterials for permission to reprint Figure 3.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
ssDNAIntegrated DNA Technologies (Coralville, Iowa)
idtdna.com
Do not vortex ssDNA. Gentle invert the vial and/or pipette solution to mix.
PBS with calcium and magnesiumAny brand.
100x Tris-EDTA buffer (TE buffer)Sigma-Aldrich (St. Loius, MO)
sigmaldrich.com
T9285
10x Tris-Borate-EDTA buffer (TBE buffer)Sigma-Aldrich (St. Loius, MO)93290TBE is a reproductive toxin.
40% Acrylamide solutionFisher Scientific (Pittsburg, PA)BP14021Acrylamide is a toxin.
Ammonium persulfate (APS)Sigma-Aldrich (St. Loius, MO)A3678Prepare a 2% solution in TE buffer. APS is a toxin and irratant.
Tetramethylethylenediamine (TEMED)Sigma-Aldrich (St. Loius, MO)T9281Prepare a 20% solution in TE buffer. TEMED is flammable, a corrosive, and a toxin.
12 mm diameter round coverglassFisher Scientific (Pittsburg, PA)
fishersci.com
12-545-82
Norland optical adhesive 72Norland Products (Cranbury, NJ)
norlandprod.com
NOA72
24-well tissue culture plateAny brand.
Microcentrifuge tubesAny brand.
Sulfo-SANPAHProteoChem or Thermo Fisher, (Rockland, IL)
proteochem.com or thermofisher.com
C111 or 22589Prepare a 0.315 mg/ml solution in water immediately before use. Dissolve at 37 °C and filter sterilze. It is normal to observe undisolved sulfo-SANPAH in the filter. Sulfo-SANPAH is light sensitive and, therefore, the solution should be protect from light until UV exposure.
Poly-D-Lysine (PDL)Sigma-Aldrich (St. Loius, MO)P6407Prepare a 0.2 mg/ml solution in water and filter sterilize.
Collagen Type IAffymetrix (Santa Clara, CA)
affymetrix.com
13813Prepare a 0.2 mg/ml solution in 0.2 N acetic acid. Solution needs to remain cold at all times to avoid polymerization. Acetic acid is a flammable, toxic, and corrosive.
22 x 60 cover glassFisher Scientific (Pittsburg, PA)12-544-G
Positive-displacement pipetteGilson, Inc (Middletown, WI)
gilson.com
F148504
Heat blockFisher Scientific (Pittsburg, PA)11-718
UV light sourcePlace gels as close as possible to the UV light. UV light can cause skin or eye injury.
ThermometerAny brand.
Nitrogen gasGTS-Welco (Flemington, NJ)
www.praxairmidatlantic.com/
NI 5.0UH-R

References

  1. Balaban, N. Q., et al. Force and focal adhesion assembly A close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 3 (5), 466-472 (2001).
  2. Peppas Brannon-Peppas, L., Peppas, N. A. Dynamic and equilibrium swelling behaviour of ph-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials. 11 (9), 635-644 (1990).
  3. Charati, M. B., Ifkovits, J. L., Burdick, J. A., Linhardt, J. G., Kiick, K. L. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter. 5 (18), 3412-3416 (2009).
  4. Davis, K. A., Burke, K. A., Mather, P. T., Henderson, J. H. Dynamic cell behavior on shape memory polymer substrates. Biomaterials. 32 (9), 2285-2293 (2011).
  5. Dembo, M., Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J. 76 (4), 2307-2316 (1999).
  6. Gray, D. S., Tien, J., Chen, C. S. Repositioning of cells by mechanotaxis on surfaces with micropatterned youngs modulus. J Biomed Mater Res A. 66 (3), 605-614 (2003).
  7. Homma, M., Seida, Y., Nakano, Y. Effect of ions on the dynamic behavior of an electrodriven ionic polymer hydrogel membrane. Journal of applied Polymer Science. 82 (1), 76-80 (2001).
  8. Horkay, F., Tasaki, I., Basser, P. J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules. 1 (1), 84-90 (2000).
  9. Jiang, F. X., Yurke, B., Firestein, B. L., Langrana, N. A. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann Biomed Eng. 36 (9), 1565-1579 (2008).
  10. Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L., Langrana, N. A. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Engineering Part A. 16 (6), 1873-1889 (2010).
  11. Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L., Langrana, N. A. The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel. Biomaterials. 31 (6), 1199-1212 (2010).
  12. Kloxin, A. M., Tibbitt, M. W., Anseth, K. S. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat Protoc. 5 (12), 1867-1887 (2010).
  13. Lin, D. C., Yurke, B., Langrana, N. A. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng. 126 (1), 104-110 (2004).
  14. Lin, D. C., Yurke, B., Langrana, N. A. Use of rigid spherical inclusions in young's moduli determination: Application to DNA-crosslinked gels. J Biomech Eng. 127 (4), 571-579 (2005).
  15. Luo, Y., Shoichet, M. S. Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response. Biomacromolecules. 5 (6), 2315-2323 (2004).
  16. Marklein, R. A., Burdick, J. A. Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter. 6 (1), 136-143 (2010).
  17. Pelham Jr, R. J., Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 94 (25), 13661-13665 (1997).
  18. Previtera, M. L., Chippada, U., Schloss, R. S., Yurke, B., Langrana, N. A. Mechanical properties of DNA-crosslinked polyacrylamide hydrogels with increasing crosslinker density. BioResearch Open Access. 1 (5), 256-259 (2012).
  19. Previtera, M. L., Langhammer, C. G., Firestein, B. L. Effects of substrate stiffness and cell density on primary hippocampal cultures. J Biosci Bioeng. 110 (4), 459-470 (2010).
  20. Previtera, M. L., Langhammer, C. G., Langrana, N. A., Firestein, B. L. Regulation of dendrite arborization by substrate stiffness is mediated by glutamate receptors. Ann Biomed Eng. 38 (12), 3733-3743 (2010).
  21. Previtera, M. L., Trout, K. L., Verma, D., Chippada, U., Schloss, R. S., Langrana, N. A. Fibroblast morphology on dynamic softening of hydrogels. Ann Biomed Eng. 40 (5), 1061-1072 (2012).
  22. Saxena, T., Gilbert, J., Stelzner, D., Hasenwinkel, J. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat. J Neurotrauma. 29 (9), 1747-1757 (2012).
  23. Sundararaghavan, H. G., Monteiro, G. A., Firestein, B. L., Shreiber, D. I. Neurite growth in 3d collagen gels with gradients of mechanical properties. Biotechnol Bioeng. 102 (2), 632-643 (2009).
  24. Wozniak, M. A., Chen, C. S. Mechanotransduction in development A growing role for contractility. Nat Rev Mol Cell Biol. 10 (1), 34-43 (2009).
  25. Wuerfel, J., et al. Mr-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage. 49 (3), 2520-2525 (2012).
  26. Zaari, N., Rajagopalan, P., Kim, S. K., Engler, A. J., Wong, J. Y. Photopolymerization in microfluidic gradient generators Microscale control of substrate compliance to manipulate cell response. Adv Mater. 16 (23-24), 2133-2137 (2004).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords DNA crosslinked Polyacrylamide HydrogelsMechanobiologyTissue ElasticityDynamic StiffnessDNA CrosslinksPolyacrylamide BackboneReversible ControlGel ElasticityFibroblastNeuron Behavior

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved