Method Article
The genetic reporter assay is a well-established and powerful tool for dissecting the relationship between DNA sequences and their gene regulatory activities. Coupling candidate regulatory elements to reporter genes that carry identifying sequence tags enables massive parallelization of these assays.
The genetic reporter assay is a well-established and powerful tool for dissecting the relationship between DNA sequences and their gene regulatory activities. The potential throughput of this assay has, however, been limited by the need to individually clone and assay the activity of each sequence on interest using protein fluorescence or enzymatic activity as a proxy for regulatory activity. Advances in high-throughput DNA synthesis and sequencing technologies have recently made it possible to overcome these limitations by multiplexing the construction and interrogation of large libraries of reporter constructs. This protocol describes implementation of a Massively Parallel Reporter Assay (MPRA) that allows direct comparison of hundreds of thousands of putative regulatory sequences in a single cell culture dish.
大规模并行报告基因分析(MPRA)允许数以千计的转录调节活性的复用测量到几十万的DNA序列1-7的。在其最常见的实施方式中,复用通过连接每个感兴趣的序列,其中包含一个开放读框下游的一个识别序列标签的合成报道基因来实现(ORF; 图1)。转染后,RNA分离和报道基因转录物的3'末端的深度测序,耦合的序列的相对活动,可以从它们的识别标记的相对丰度来推断。
图1概述MPRA的。MPRA记者库构建体是由耦合假定调控序列来合成构造其次是一个标识序列标签的报告基因,它由一个"惰性"ORF(如GFP或萤光素酶)。该文库转染集体到培养的细胞群和转录的mRNA记者随后恢复。深度测序用于计算出现在记者的mRNA和转染的质粒中的每一标签的数量。 mRNA的比率计算过的质粒计数可以用来推断相应的调节序列的活性。适于与从尼科夫权限等 2。
MPRA可适应各种实验设计,包括个体基因的调节元件的1)完整的突变,2)扫描横跨感兴趣的基因座的新的调节元件,3)测试中的一组假定的自然遗传变异的影响启动子,增强子或沉默,而合成的调控元件4)半理性设计。李可以采用多种方法,包括寡核苷酸文库合成法(OLS)的可编程芯片2,3,6,7,组装简并寡核苷酸1,4,组合结扎8和基因组DNA 5碎裂产生的序列变异中图书馆。
本协议描述的建设启动的库变体使用OLS和pMPRA1和pMPRAdonor1向量(Addgene识别码49349和49352,分别http://www.addgene.org),这个库的瞬时转染到培养的哺乳动物细胞和随后的定量通过它们的相关标签(TAG-SEQ)深度测序的启动子活性。早期版本的这个协议的报道,梅尔尼科夫等自然生物技术30,271-277(2012)和Kheradpour 等基因组研究23,800-811(2013)的研究中使用。
1序列的设计与合成
MPRA_SfiI_F | GCTAAGGGCCTAACTGGCCGCTTCACTG |
MPRA_SfiI_R | GTTTAAGGCCTCCGTGGCCGACGCTCTTC |
TAGseq_P1 | AATGATACGGCGACCACCGAGATCTACACT CTTTCCCTACACGACGCTCTTCCGATCT |
TAGseq_P2 | CAAGCAGAAGACGGCATACGAGAT [指数] GT GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGAGG |
表1引物序列[指数]表示用于多路测序6至8个核苷酸指数序列。获得至少8 TagSeq-P2引物与不同的索引。所有的引物应通过HPLC或PAGE纯化。
试剂 | 1X量(μl) |
Herculase II融合DNA聚合酶 | 0.5 |
5X Herculase II反应缓冲液 | 10 |
的dNTP(各10毫米) | 1.25 |
BSA(20毫克/毫升) | 1.25 |
底漆MPRA_SfiI_F(25微米) | 0.25 |
底漆MPRA_SfiI_R(25微米) | 0.25 |
OLS模板(1-10渺摩尔) | 变化 |
无核酸酶的水 | 50 |
图2制备寡核苷酸合成库。一) 三种不同原料合成的寡核苷酸库法(OLS),在变性10%TBE-尿素聚丙烯酰胺凝胶运行。对应全长寡核苷酸(*)频段可以可视化,并从图书馆切除1和2图书馆3包含与页净化干扰污染物。如果是这种情况,直接进行相同的寡核苷酸库运行的打开和乳液PCR扩增的PCR扩增。 乙)产品在琼脂糖凝胶上。复杂的寡核苷酸文库PCR扩增经常造成嵌合产品,可能会出现更高和更低的频段等文物。乳液PCR技术可以最大限度地减少这些文物。
2,图书馆建设
把transfection,扰动和RNA分离
4,标签序列
试剂 | 1X量(μl) |
基因样本(400-700纳克总) | 8 |
寡0dT(50微米) | 1 |
的dNTP(各10毫米) | 1 |
试剂 | 1X量(μl) |
10倍的Superscript III RT缓冲液 | 2 |
氯化镁 (25毫米) | 4 |
DTT(0.1M) | 2 |
RNaseOut(40 U /μL) | 1 |
的Superscript III(200 U /μL) | 1 |
表4的cDNA合成反应混合物中。
试剂 | 1X量(μl) |
2个PfuUltra II热启动PCR反应混合液 | 25 |
底漆TagSeq_P1(25微米) | 0.5 |
底漆TagSeq_P2(25微米) | 0.5 |
模板(mRNA和cDNA的混合物或质粒DNA) | 变化 |
无核酸酶的水 | 50 |
表5变量-SEQ PCR反应混合物。
MPRA利于高分辨率的转录调控元件的序列 - 活性关系的定量解剖。一个成功的MPRA实验通常会产生高度可重复的测量结果,为广大的转库( 图3A)序列。如果重复性差被观察( 图3B),这是指示记者mRNAs的回收的RNA样本中的浓度太低,由于是1)低的检测序列中的绝对活性,或2)低的转染效率。
图4显示了通过测定生成的具有代表性的"信息足迹"1,2〜人类IFNB基因在HEK293细胞有或没有接触到仙台病毒上游的145 bp的序列37000的随机变量。启动子的TATA盒和已知的近端增强10可以明确认定为信息丰富REGI附件中的病毒依赖性。
图3标签序列的重现性。散点图显示高(A)和低电平(B)的再现性,从 两个独立的复制次转染标记-SEQ数据的例子。后者图示出许多异常的标记具有高的mRNA计数仅在一个在两个重复的。这样的工件通常表示记者mRNA的浓度太低,定量PCR扩增,或者是由于该报道构建中低绝对值的活动,或低的转染效率。
人类IFNB转录起始位点和近端增强图4,信息足迹。 上游IFNB人类基因约有37,000随机的145个核苷酸(nt)的区域变异采用MPRA在HEK293细胞(A)和无(二)接触到仙台病毒检测。蓝色条显示记者输出和核苷酸在每个位置之间的互信息。近端增强子和TATA盒中脱颖而出,作为对病毒感染的高信息含量的区域。
MPRA is a flexible and powerful tool for dissection of sequence-activity relationships in gene regulatory elements. The success of MPRA experiments depend on at least three factors: 1) careful design of the sequence library, 2) minimization of artifacts during amplification and cloning, and 3) high transfection efficiency.
The possible lengths of the variable regions in the reporter constructs are largely determined by the synthesis or cloning technology used. Standard OLS is generally limited to about 200 nt, but this protocol is compatible with inserts up to at least 1,000 nt. Note that variable regions that are highly repetitive or contain strong secondary structures may end up underrepresented due to PCR and cloning biases. The length of the tags that identify each of the variable regions should be 10-20 nt and the collection of tags should ideally be designed such there are at least two nucleotide differences between any pair. Tags that contain the seed sequences of known microRNA or other factors that might influence mRNA stability should also be avoided when possible.
A key parameter in the design of MPRA experiments is the total number of distinct reporter constructs to be included in the library (the design complexity, denoted CD). In practice, CD is limited by the number of cultured cells that can be transfected. As a rule of thumb, the total number of transfected cells should be at least 50-100 times greater than CD. For example, if 20 million cells can be transfected with a transfection efficiency of 50%, then CD should be no more than ~200,000. Note that CD is equal to the number of distinct regulatory sequence variants multiplied by the number of distinct tags per sequence. The more distinct tags are linked to each regulatory sequence, the more accurate the estimate of the activity of that sequence can be made (because measurements from distinct tags can be averaged), but the fewer distinct variants can be assayed in one experiment. The optimal choice depends on the experimental design. In a simple “promoter bashing” experiment, where a mathematical model will be fitted to the aggregated measurements, a single tag per variant is usually sufficient. In a screen for single-nucleotide polymorphisms that cause changes in regulatory activities, it may be necessary to use 20 or more tags per allele to obtain statistically robust results, because comparing each pair of alleles requires a separate hypothesis test.
If the sequences to be assayed are not expected to contain transcription start sites, a constant promoter can also be added in the same fragment. For example, pMPRAdonor2 (Addgene ID 49353) includes a minimal TATA-box promoter that is useful when the upstream variable region is expected to have significant enhancer activity, while pMPRAdonor3 (Addgene ID 49354) includes a modified, strong SV40 viral promoter that is useful when the variable region is expected to contain silencer activity or other negative regulatory elements.
Raw OLS products often contain a significant fraction of truncated oligonucleotides. These may interfere with accurate PCR amplification of the designed sequences, particularly when there is significant homology between them. Using PAGE purification to remove truncated synthesis products and emulsion PCR to minimize amplification artifacts are effective techniques for ensuring high library quality. If either step is impractical, it is imperative to minimize the number of PCR cycles used at each amplification step. Selection and expansion of the cloned library in liquid culture is generally sufficient to maintain the design complexity, but if recombination-prone vectors are to be used or significant representation bias is observed, the recovered cells can instead be plated directly onto large LB agar plates, expanded as individual colonies and then scraped off for DNA isolation. It is also important to consider the potential impact of synthesis errors, which are typically found at a rate of 1:100-500 in OLS. Full-length sequencing of the reporter constructs prior to transfection is recommended to identify and correct for such errors.
It is not necessary to introduce reporter constructs into every cell in the transfected culture, but transfection efficiencies below ~50% may lead to poor signal to noise ratios. It is advisable to optimize transfection conditions prior to performing MPRA experiments in a new cell type. When working with hard-to-transfect cell types, MPRA signals can be boosted by pre-selecting transfected cells. The pMPRA vector series includes variants that constitutively express a truncated cell surface marker that can be used to physically enrich for transfected cells prior to RNA isolation (for example, Addgene IDs 49350 and 49351).
作者宣称,他们没有竞争的经济利益。
这项工作是由美国国立卫生研究院在奖数R01HG006785美国国家人类基因组研究所的支持。
Name | Company | Catalog Number | Comments |
Oligonucleotide library synthesis | Agilent, CustomArray, or other OLS vendors | custom | If using OLS construction method |
pMPRA1 | Addgene | 49349 | MPRA plasmid backbone |
pMPRAdonor1 | Addgene | 49352 | luc2 ORF donor plasmid |
TE 0.1 Buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8.0) | Generic | n/a | OLS buffer |
Novex TBE-Urea Gels, 10% | Life Technologies | EC6875BOX | PAGE purification of OLS products |
Novex TBA-Urea Sample Buffer | Life Technologies | LC6876 | PAGE purification of OLS products |
SYBR Gold Nucleic Acid Gel Stain | Life Technologies | S-11494 | PAGE purification of OLS products |
Micellula DNA Emulsion & Purification Kit | EURx/CHIMERx | 3600-01 | Library amplification by emulsion PCR |
Herculase II Fusion DNA Polymerase | Agilent | 600675 | Polymerase for emulsion PCR |
SfiI | New England Biolabs | R0123S | Library cloning with pMPRA vectors |
KpnI-HF | New England Biolabs | R3142S | Library cloning with pMPRA vectors |
XbaI | New England Biolabs | R0145S | Library cloning with pMPRA vectors |
T4 DNA Ligase (2,000,000 units/ml) | New England Biolabs | M0202T | Library cloning with pMPRA vectors |
One Shot TOP10 Electrocomp E. coli | Life Technologies | C4040-50 | Library cloning with pMPRA vectors |
LB agar and liquid media with carbenicllin | Generic | n/a | Growth media for cloning |
E-Gel EX Gels 1% | Life Technologies | G4010-01 | Library verification and purification |
E-Gel EX Gels, 2% | Life Technologies | G4010-02 | Library verification and purification |
MinElute Gel Extraction Kit | Qiagen | 28604 | Library and backbone purification |
EndoFree Plasmid Maxi Kit | Qiagen | 12362 | Library DNA isolation |
Cell culture media | n/a | n/a | Experiment-specific |
Transfection reagents | n/a | n/a | Experiment-specific |
MicroPoly(A)Purist Kit | Life Technologies | AM1919 | mRNA isolation |
TURBO DNA-free Kit | Life Technologies | AM1907 | Plasmid DNA removal |
SuperScript III First-Strand Synthesis System | Life Technologies | 18080-051 | cDNA synthesis |
PfuUltra II Hotstart PCR Master Mix | Agilent | 600850 | Polymerase for Tag-Seq PCR |
Primers (see text) | IDT | custom | PAGE purify Tag-Seq primers |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。