JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Differentiation of precursor cells into osteoclasts is regulated by cytokines and growth factors. Here, a novel gene transfer technique for differentiation of osteoclasts in vivo and cell culture protocols for differentiating precursor cells into osteoclasts in vitro as a method to study the effects of cytokines on osteoclastogenesis are described.

Abstract

Differentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation. The minicircle DNA delivery gene transfer system provides an alternative method to establish an osteoporosis-related model is particularly useful to study the efficacy of various pharmacological inhibitors in vivo. Similarly, in vitro culturing protocols for producing osteoclasts from human precursor cells in the presence of specific cytokines enables scientists to study osteoclastogenesis in human cells for translational applications. Combined, these techniques have the potential to accelerate drug discovery efforts for osteoclast-specific targeted therapeutics, which may benefit millions of osteoporosis and arthritis patients worldwide.

Introduction

Musculoskeletal diseases affect millions of people in the United States and present severe consequences for national and local health systems1. These disorders are characterized by loss of bone and joint function that require extensive treatment and long periods of recovery. Commonly, a relative increase in the number and/or activity of osteoclasts, cells specialized to resorb bone, in osteoporosis and arthritis is observed2. Under physiological conditions the number and activity of osteoclasts is regulated by receptor activator of nuclear factor κ-B ligand (RANKL), which is produced by osteoblasts. Osteoprotegerin (OPG), a decoy receptor for RANKL is also produced by osteoblasts3. In vivo animal models that involve systemic overexpression of sRANKL, or deletion of OPG are very valuable in osteoporosis research; however, these methods require the generation of transgenic mice4,5. Here, a novel alternative method of overexpressing sRANKL for the study of musculoskeletal-related disorders is described. Specifically, minicircle (MC) DNA technology and hydrodynamic delivery methods were used to achieve gene transfer of sRANKL in vivo and overexpress mouse sRANKL systemically6.

This method is also complementary to other in vivo models of osteoporosis, such as hormonal modulation of osteoclasts following ovariectomy7 and dietary intervention by low-calcium diet8. These models are very useful to study different aspects of musculoskeletal-related disorders however they require surgical procedures and may take up to several months, at a significant cost9. Ovariectomized (OVX) rodent model is an experimental animal model where removal of ovaries leads to estrogen deficiency thereby mimicking human postmenopausal osteoporosis10. Human post-menopausal osteoporosis, a condition where estrogen deficiency leads to increased risk of bone fractures and osteoporosis affects approximately eight million women in the United States alone. Although the OVX model is useful for post-menopausal osteoporosis it offers limited advantages in studying osteoporosis in general. Estrogen suppresses bone loss, by inducing osteoclast and inhibiting osteoblast apoptosis, therefore in its absence an increased osteoclast activity is observed10-12. A RANKL-OPG ratio imbalance that favors bone resorption is also observed13. However, estrogen deficiency in vivo is also accompanied by decreased levels of transforming growth factor β (TGF β), increased interleukin-7 (IL-7) and TNF, IL-1 and IL-614,15. As these cytokines have known bone remodeling modulatory functions independent of the RANKL pathway, it is impossible to attribute any osteoclast activation solely to the RANKL-RANK axis. The model described in this paper enables researchers to study in vivo RANKL-RANK axis in osteoclastogenesis and bone loss without pro-inflammatory cytokines compared to OVX rodent models.

Additionally, in vitro osteoclastogenesis techniques are essential tools to study osteoclast activation for potential therapeutic treatments of musculoskeletal diseases. Previous studies have also shown that culturing mouse bone marrow derived macrophages (BMMs) with mouse macrophage colony-stimulating factor (M-CSF) and mouse sRANKL can lead to osteoclast differentiation3,16,17. Here, the protocols to generate multinucleated osteoclast-like cells from mouse bone marrow as well as from human peripheral blood mononuclear cells (PBMCs) in vitro18 are described. The cell-based assays required to define a mature terminally differentiated and fully functional osteoclast are also briefly described. These in vitro techniques complement the novel in vivo approach and together serve as powerful investigative tools to study osteoclast differentiation and activation. Using these systems, scientists are able to generate osteoclasts in vivo and in vitro and define the stimuli and signals required for their proliferation and activation as well as test the efficacy of pharmacological and biological inhibitors.

Access restricted. Please log in or start a trial to view this content.

Protocol

1. Hydrodynamic Delivery of sRANKL MC DNA

  1. Hydrodynamic Delivery via Mouse Tail Vein
    1. Weigh the mouse before the tail vein injection. Dilute sRANKL or green fluorescent protein (GFP) MC in Ringer's solution (pre-warm at 37 °C) in a total volume of ~10% of the mouse's body weight.
    2. Warm up the mouse in a cage for 10 min prior to injection in order to dilate blood vessels and make lateral veins (LVs) visible. Monitor the mouse carefully to avoid dehydration and hyperthermia.
    3. As soon as the LVs are dilated and visible, transfer the mouse to the restrainer and insert the plug far enough into the barrel to restrain movement. Monitor the mouse for normal activity such as breathing. Adjust the plug of restrainer if needed.
    4. Disinfect the injection area 3/4 from the tip of the tail with an alcohol wipe. Use a 27-30 G needle for mouse tail vein injection. Hold the tail firmly with one hand and insert the needle into the tail vein. Apply pressure on the syringe and complete the injection within 5-7 sec.
    5. Remove the needle from the tail vein and apply pressure with a cotton ball on the injection site to stop bleeding. Monitor the mouse for 15-30 min, then transfer the mouse back to vivarium once the breathing rate is reduced to its normal rate.
  2. Confirmation of Systemic Mouse sRANKL Expression and Quantification of Mouse Serum TRACP5b Post Gene Transfer
    1. Warm up the mouse in a cage for 5-10 min in order to dilate blood vessels and make LVs visible. Monitor the mouse carefully to avoid dehydration and hyperthermia.
    2. Make a small incision with a blade to the mouse's tail at a site one forth from the tip of the tail.
    3. Collect approximately 100 μl of blood in serum separation tubes.
    4. Incubate serum separation tubes at room temperature for 30 min.
    5. Centrifuge samples at 10,000 x g for 5 min and collect serum. Store serum in -80 °C for further analysis.
    6. Perform sRANKL ELISA and mouse serum TRACP5b assay on serum samples using a commercial available kit.

2. In vitro Osteoclast Generation from Mouse BMMs

  1. Isolation and Culturing of BMMs
    1. Isolation of the tibia and femur bones: Euthanize the donor mouse with CO2, and disinfect the legs with 70% ethanol. Dissect from the pubic bone to the calcaneus bone, to remove the femur and tibia bones intact.
    2. Remove the skin and muscle carefully without damaging the bone. Place processed femur and tibia bone in a Petri dish containing phosphate buffered saline (PBS).
    3. Removal of bone marrow: Cut off the tip on one side of the femur and tibia bones and flush out the bone marrow into a 50 ml tube using a 1ml syringe with a 25 G needle, loaded with α-MEM containing 1% penicillin/streptomycin (Osteoclast Culture Medium/OCM).
    4. Process bone marrow: Mix and transfer bone marrow suspension to a new 50 ml tube by passing it through a 70 μm nylon cell strainer. Centrifuge the cells at 300 x g and re-suspend in α-MEM containing 1% penicillin/streptomycin and 10% FBS (Osteoclast Culture medium/OCM (+)).
  2. Culture of Macrophages
    1. Count cells using a hemocytometer or automatic cell counter.
    2. Plate 1 x 106 cells per well for a 6-well plate or 3 x 105 cells to glass coverslips (5 mm) or dentine slices placed in 96-well plate and incubate at 37 °C.
    3. Aspirate all media containing non-adherent cells and incubate cells at 37 °C with fresh OCM (+) containing 25 ng/ml mouse M-CSF for 48 hr.
    4. Aspirate all media and incubate cells at 37 °C with fresh OCM (+) media containing 25 ng/ml mouse M-CSF, and 30 ng/ml mouse sRANKL to initiate osteoclastogenesis. Replenish media every 3 days as required.
    5. Grow cells for approximately 6-8 days to form giant multi-nuclear cells capable of resorbing bone. As soon as multinucleated cells appear, perform TRAP (tartrate resistant acid phosphatase) staining using a commercial available kit, and when fully matured, perform functional assays. Visualize F-actin rings on coverslips using phalloidin stain and image the cells attached to dentine slices by scanning electron microscopy (SEM) as described previously19.

3. In vitro Osteoclast Generation from Human PBMCs

  1. Isolation of Human PBMCs
    1. Add 10 ml of pre-warmed Histopaque-1077 into a 50 ml tube.
    2. Empty leukocyte filter obtained from blood bank with sterile PBS into a 50 ml tube (1:1 ratio of blood with PBS). Layer the diluted blood over the histopaque solution very slowly, making sure that the blood does not mix with the histopaque.
    3. Centrifuge samples at 1000 x g for 20 min at 18 °C. Following centrifugation, carefully isolate the white buffy coat layer containing the white blood cells and transfer to a new 50 ml tube.
    4. Dilute cells with PBS and centrifuge again at 650 x g for 5 min to collect the cells.
    5. Remove supernatant and resuspend cells in OCM (-) media and count cells using cell counter.
  2. Plating and Culturing PBMCs
    1. Resuspend the cells in OCM (+) media and plate 8 x 106 cells/ml per well in a 6-well plate or 1 x 106 cells/ml per well in 96-well plate. Plate cells on glass coverslips (5 mm) as required for immunofluorescence imaging as well as on bone slices suitable for bone resorption assays as previously described20.
    2. Change culture media, replenishing the cells with human M-CSF every 2-3 days or as required. Then proceed to differentiation step on day 5 by adding 30 ng/ml of human sRANKL along with 25 ng/ml human M-CSF in OCM (+) media to initiate osteoclastogenesis.
    3. Grow cells for approximately 14 to 21 days to form giant multi-nuclear cells. As soon as multinucleated cells appear, these cells can then be labeled for TRAP, and when fully matured, functional assays can be performed. F-actin rings can be visualized on coverslips using phalloidin stain. The cell morphology can be examined in cells attached to dentine slices by SEM.

Access restricted. Please log in or start a trial to view this content.

Results

Here, a novel gene transfer technique for differentiation of osteoclasts in vivo and cell culture protocols for differentiating precursor cells into osteoclasts in vitro as a method to study the effects of cytokines on osteoclastogenesis are described. In Figure 1, the representative results of successful gene transfer of GFP and mouse sRANKL MC in mice are shown. In Figure 2, the representative images of mouse bone marrow or human PBMC cell differentiation time course ...

Access restricted. Please log in or start a trial to view this content.

Discussion

Musculoskeletal conditions are leading causes of morbidity and disability and are comprised of over 150 diseases and syndromes; affecting approximately 90 million Americans today. Joint inflammation and bone destruction are predominant features of musculoskeletal conditions, including arthritis and osteoporosis. Osteoporosis is a condition that weakens bone integrity, often leading to fractures of the bone. Arthritis is a chronic, debilitating disease characterized by inflammation of the joints that become swollen, tende...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors have nothing to disclose.

Acknowledgements

Research was partly supported by NIH research grants R01 AR062173 and SHC 250862 to IEA. ES is the recipient of NIH T32 CTSC predoctoral fellowship.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
alpha-MEMLife Technologies 12561-056
Human M-CSFMiltenyi Biotec130-096-492
Mouse M-CSFMiltenyi Biotec130-094-643
Human RANK-Ligand - solubleMiltenyi Biotec130-094-631
Mouse RANK-Ligand - solubleMiltenyi Biotec130-094-076
Tailveiner Restrainer for miceBraintreeTV-150 STD
Mouse TRANCE/RANK L/TNFSF11 Quantikine ELISA Kit R&D systemsMTR00
Acid Phosphatase, Leukocyte (TRAP) KitSigma387A
MouseTRAP assay immunodiagnostic systemsSB-TR103

References

  1. Yelin, E. Cost of musculoskeletal diseases: impact of work disability and functional decline. The Journal of rheumatology. Supplement. 68, 8-11 (2003).
  2. Boyce, B. F., Rosenberg, E., de Papp, A. E., Duong le, T. The osteoclast, bone remodelling and treatment of metabolic bone disease. European journal of clinical investigation. 42, 1332-1341 (2012).
  3. Lacey, D. L., et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 93, 165-176 (1998).
  4. Mizuno, A., et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. Journal of bone and mineral metabolism. 20, 337-344 (2002).
  5. Bucay, N., et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Gene., & development. 12, 1260-1268 (1998).
  6. Suda, T., Liu, D. Hydrodynamic gene delivery: its principles and applications. Molecular therapy: the journal of the American Society of Gene Therapy. 15, 2063-2069 (2007).
  7. Wronski, T. J., Dann, L. M., Scott, K. S., Cintron, M. Long-term effects of ovariectomy and aging on the rat skeleton. Calcified tissue international. 45, 360-366 (1989).
  8. Seto, H., Aoki, K., Kasugai, S., Ohya, K. Trabecular bone turnover, bone marrow cell development, and gene expression of bone matrix proteins after low calcium feeding in rats. Bone. 25, 687-695 (1999).
  9. Lelovas, P. P., Xanthos, T. T., Thoma, S. E., Lyritis, G. P., Dontas, I. A. The laboratory rat as an animal model for osteoporosis research. Comparative medicine. 58, 424-430 (2008).
  10. Sherman, B. M., West, J. H., Korenman, S. G. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. The Journal of clinical endocrinology and metabolism. 42, 629-636 (1976).
  11. Hughes, D. E., et al. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nature medicine. 2, 1132-1136 (1996).
  12. Kousteni, S., et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell. 104, 719-730 (2001).
  13. Ominsky, M. S., et al. RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 23, 672-682 (2008).
  14. Kitazawa, R., Kimble, R. B., Vannice, J. L., Kung, V. T., Pacifici, R. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. The Journal of clinical investigation. 94, 2397-2406 (1994).
  15. Weitzmann, M. N., Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. The Journal of clinical investigation. 116, 1186-1194 (2006).
  16. Suda, T., Nakamura, I., Jimi, E., Takahashi, N. Regulation of osteoclast function. J Bone Miner Res. 12, 869-879 (1997).
  17. Asagiri, M., Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone. 40, 251-264 (2007).
  18. Matsuzaki, K., et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochemical and biophysical research communications. 246, 199-204 (1998).
  19. Adamopoulos, I. E., et al. Synovial fluid macrophages are capable of osteoclast formation and resorption. The Journal of pathology. 208, 35-43 (2006).
  20. Adamopoulos, I. E., et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis researc., & therapy. 12, (2010).
  21. Jones, D., Glimcher, L. H., Aliprantis, A. O. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest. 121, 2534-2542 (2011).
  22. Sato, K., Takayanagi, H. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol. 18, 419-426 (2006).
  23. Das, S., Crockett, J. C. Osteoporosis - a current view of pharmacological prevention and treatment. Drug design, development and therapy. 7, 435-448 (2013).
  24. Chen, Z. Y., He, C. Y., Ehrhardt, A., Kay, M. A. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Molecular therapy : the journal of the American Society of Gene Therapy. 8, 495-500 (2003).
  25. Kay, M. A., He, C. Y., Chen, Z. Y. A robust system for production of minicircle DNA vectors. Nature biotechnology. 28, 1287-1289 (2010).
  26. Chen, Z. Y., He, C. Y., Kay, M. A. Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Human gene therapy. 16, 126-131 (2005).
  27. Halleen, J. M., et al. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 15, 1337-1345 (2000).
  28. Adamopoulos, I. E., et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J Immunol. 187, 951-959 (2011).
  29. Suda, T., Takahashi, N., Martin, T. J. Modulation of osteoclast differentiation. Endocrine reviews. 13, 66-80 (1992).
  30. Takahashi, N., et al. Osteoblastic cells are involved in osteoclast formation. Endocrinology. 123, 2600-2602 (1988).
  31. Bradley, E. W., Oursler, M. J. Osteoclast culture and resorption assays. Methods Mol Biol. 455, 19-35 (2008).
  32. Arai, F., et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. The Journal of experimental medicine. 190, 1741-1754 (1999).
  33. Fuller, K., et al. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. The Journal of experimental medicin. 178, 1733-1744 (1993).
  34. Edwards, J. R., Mundy, G. R. Advances in osteoclast biology: old findings and new insights from mouse models. Nature reviews. Rheumatology. 7, 235-243 (2011).
  35. Weinstein, R. S., et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. The Journal of clinical investigation. 109, 1041-1048 (2002).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords OsteoclastsBone ResorptionMusculoskeletal DisordersIn Vivo Gene TransferIn Vitro Cell based AssaysCytokinesOsteoclastogenesisOsteoporosisArthritisDrug Discovery

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved