A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This film demonstrates how to acquire systemic and hepatic hemodynamics in mice. The whole monitoring includes acquisition of vital parameters, systemic blood pressure, central venous pressure, common hepatic artery flow rate, and portal vein pressure as well as the portal flow rate in mice.
The use of mouse models in experimental research is of enormous importance for the study of hepatic physiology and pathophysiological disturbances. However, due to the small size of the mouse, technical details of the intraoperative monitoring procedure suitable for the mouse were rarely described. Previously we have reported a monitoring procedure to obtain hemodynamic parameters for rats. Now, we adapted the procedure to acquire systemic and hepatic hemodynamic parameters in mice, a species ten-fold smaller than rats. This film demonstrates the instrumentation of the animals as well as the data acquisition process needed to assess systemic and hepatic hemodynamics in mice. Vital parameters, including body temperature, respiratory rate and heart rate were recorded throughout the whole procedure. Systemic hemodynamic parameters consist of carotid artery pressure (CAP) and central venous pressure (CVP). Hepatic perfusion parameters include portal vein pressure (PVP), portal flow rate as well as the flow rate of the common hepatic artery (table 1). Instrumentation and data acquisition to record the normal values was completed within 1.5 h. Systemic and hepatic hemodynamic parameters remained within normal ranges during this procedure.
This procedure is challenging but feasible. We have already applied this procedure to assess hepatic hemodynamics in normal mice as well as during 70% partial hepatectomy and in liver lobe clamping experiments. Mean PVP after resection (n= 20), was 11.41±2.94 cmH2O which was significantly higher (P<0.05) than before resection (6.87±2.39 cmH2O). The results of liver lobe clamping experiment indicated that this monitoring procedure is sensitive and suitable for detecting small changes in portal pressure and portal flow rate. In conclusion, this procedure is reliable in the hands of an experienced micro-surgeon but should be limited to experiments where mice are absolutely needed.
The overall goal of this video was to demonstrate a real-time monitoring procedure for acquiring systemic and hepatic hemodynamic parameters. The rationale for developing this procedure is its great value for experimental interventions in mice that require obtaining systemic and hepatic hemodynamic parameters. The procedure can be applied to naïve animals and during or after a given hepato-biliary experimental surgical intervention, such as partial hepatectomy, portal vein ligation and liver transplantation.
Acquisition of hepatic hemodynamic data in rodents requires the proposed invasive procedure. Hepatic perfusion cannot be obtained non-invasively. However, there are alternatives for the acquisition of the systemic blood pressure. Monitoring techniques such as the tail cuff technique8 have been utilized for acquiring the blood pressure in both rats and mice. The tail cuff technique can be applied in conscious animals. When measuring the blood pressure, the animal needs to be placed and fixed in a specific uncomfortable position. In the manual of the tail-cuff device, the manufacturer states that mice may become nervous and stressed which may diminish the circulation in the tail. Under that circumstance, the peripheral blood pressure acquired in the tail may be much lower than the central blood pressure.
The full monitoring procedure was performed with an integrated multiple-channel monitor using a series of sensors for data acquisition. The blood pressure was obtained by inserting a catheter into the respective vessel after careful microsurgical dissection and exposure under the microscope. The flow rate was measured by placing a transonic flow probe around each vessel.
We already reported a similar intraoperative monitoring procedure for rats resulting in a comprehensive series of physiological hemodynamic data comparable to single data reported from other groups7. Therefore we considered this procedure to represent a good basis for adapting it to the mouse, a species 10-fold smaller than the rat. The key difference to the rat procedure is the use of Millar catheters for acquiring blood pressure data instead of a fluid-based catheter system. Flow data were also acquired with transonic flow probes, just much smaller ones than for the corresponding rat vessels.
Due to the small size of the animal, instrumentation of mice is technically challenging, but feasible. Once instrumentation is completed, data acquisition and primary life data analysis is simple, since a predefined setting file can be used. The setting file has to be defined once at the beginning of a series of experiments and can be stored and used for all subsequent experiments.
Up to now we applied this procedure to assess hepatic hemodynamic effects in acute experiments. We measured CAP and PVP before and immediately after 70% partial hepatectomy (PH) and in clamping/de-clamping experiments. We clamped the hepato-duodenal ligament of the right lobe representing 20% of the liver mass followed by brief (5min) clamping of the median and left lateral lobe representing totally 90% of the liver mass. De-clamping started with releasing the clamp from the right lobe followed by freeing the median and left lateral lobe. Maximal clamping time was below 10 min.
Housing and all procedures carried out were in accordance with German Animal Welfare Legislation.
1. Sensors Calibration (Follow Manufacturer's Instructions for Sensors Calibration)
1.1) Millar catheter calibration. Pre-soak the tip of the catheter in sterile water or saline for 30 min prior to balance (zeroing) and calibration.
1.2) Blood flow probe calibration
2. Prepare the Mouse for the Surgical Procedure
3. Vital Parameters Measurement
4. Neck Operation for Systemic Cardiovascular Monitoring
4.1) Vessel dissection
4.2) Carotid artery blood flow measurement
4.3) Carotid artery pressure measurement (CAP)
4.4) Jugular vein blood flow measurement
4.5) Central venous pressure measurement (CVP)
5. Abdominal Operation for Acquisition of Hepatic Hemodynamics
5.1) Vessel identification
5.2) Measurement of portal blood flow
5.3) Measurement of Common hepatic artery flow
5.4) Measurement of portal vein pressure (PVP)
Vital parameters of the mice such as respiratory rate and heart rate are obviously much higher than in rat. Mean systemic blood pressure and jugular vein pressure are similar to rat values and even similar to the human data.
Hepatic hemodynamic data are obviously different. We obtained normal values from 8 mice. Portal blood flow in normal mice ranged between 1.6 to 2.3 ml/min. Flow in the common hepatic artery ranged from 0.10 to 0.35 ml/min. Portal vein pressure in normal animals was in the ...
Monitoring of hepatic hemodynamics is an important research tool in hepatology and hepatobiliary surgery. Acquisition of hepatic hemodynamic data helps to characterize the effect of hepatobiliary procedures on the circulatory system. Acquisition of hepatic hemodynamic data is also needed to study the effect of drugs affecting portal pressure and portal flow, e.g., as needed in studies evaluating vasoactive drugs.
Despite the small size, the vital parameters, systemic and hepatic hemod...
The authors declare that they have no competing financial interests.
This research was supported by the German Federal Ministery for Education and Research (BMBF) funded “Virtual Liver Network”. I’d like to thank Frank Schubert and Rene Gumpert from the media center of Jena University Hospital for their help in producing the video and creating the animation and Isabel Jank for recording the audio.
Name | Company | Catalog Number | Comments |
PowerLab 16/30 | ADInstruments | PL3516 | |
Quad Bridge Amp | ADInstruments | FE224 | Bridge amplifier |
Animal Bio Amp | ADInstruments | FE136 | |
Needle Electrodes for FE136 (3 pk) | ADInstruments | MLA1213 | |
Perivascular Flowmeter Module | Transonic | TS420 | |
Flowprobe MA0.5PSB/MA1PSB | Transonic | MA0.5PSB/MA1PSB | |
SPR-1000 Mouse Pressure Catheter | Millar instruments | 841-0001 | |
fluid filled catheter | Terumo | SR+DU2619PX | 26G, 0.64×19mm |
micro scissors | F·S·L | No. 14058-09 | |
micro serrefine | F·S·L | No.18055-05 | |
Micro clamps applicator | F·S·L | No. 18057-14 | |
Straight micro forceps | F·S·L | No. 00632-11 | |
Curved micro forceps | F·S·L | No. 00649-11 | |
needle-holder | F·S·L | No. 12061-01 | |
6-0 silk | ethicon | ||
6-0 prolene | ethicon | ||
7-0 prolene | ethicon | ||
10-0 prolene | ethicon | ||
Tail cut-off device | Kent Scientific | www.kentscientific.com | |
LabChart7 | ADInstruments | data analysis software |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved