JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Isolement de leucocytes des tissus murins à l'interface materno-foetale

Published: May 21st, 2015

DOI:

10.3791/52866

1Department of Obstetrics & Gynecology, Wayne State University School of Medicine, 2School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, the Robinson Research Institute, The University of Adelaide, 3Department of Immunology & Microbiology, Wayne State University School of Medicine, 4Perinatology Research Branch, NICHD/NIH/DHHS

Described herein is a protocol to isolate and analyze the infiltrating leukocytes of tissues at the maternal-fetal interface (uterus, decidua, and placenta) of mice. This protocol maintains the integrity of most cell surface markers and yields enough viable cells for downstream applications including flow cytometry analysis.

La tolérance immunitaire pendant la grossesse nécessite que le système immunitaire de la mère subit des changements distinctifs afin d'accepter et de nourrir le foetus de développement. Cette tolérance est initiée pendant le coït, établi au cours de la fécondation et l'implantation, et maintenu pendant toute la grossesse. Médiateurs actifs cellulaires et moléculaires de la tolérance foeto-maternelle sont enrichis sur le site de contact entre les tissus foetaux et maternels, connus sous le nom de l'interface materno-fœtale, qui comprend le placenta et l'utérus et des tissus déciduales. Cette interface est composée de cellules stromales et leucocytes infiltrants, et leurs caractéristiques d'abondance et phénotypiques changer au cours de la grossesse. Infiltration des leucocytes à l'interface materno-fœtale comprennent les neutrophiles, les macrophages, les cellules dendritiques, les mastocytes, les cellules T, les cellules B, les cellules NK, les cellules NKT et qui créent ensemble le micro-environnement local qui soutient la grossesse. Un déséquilibre entre ces cellules ou tout inappropaltération riée dans leurs phénotypes est considéré comme un mécanisme de la maladie pendant la grossesse. Par conséquent, l'étude des leucocytes qui infiltrent l'interface materno-fœtale est essentiel en vue d'élucider les mécanismes immunitaires qui conduisent à des complications liées à la grossesse. On décrit ici un protocole qui utilise une combinaison de dissociation mécanique douce suivie d'une décomposition enzymatique protéolytique robuste avec un cocktail enzymatique collagénolytique et pour isoler les leucocytes infiltrant des tissus murins à l'interface materno-fœtale. Ce protocole permet l'isolement d'un nombre élevé de leucocytes viables (> 70%) avec des propriétés antigéniques et fonctionnelles suffisamment conservées. Les leucocytes isolés peuvent ensuite être analysés par plusieurs techniques, y compris l'immunophénotypage, tri cellulaire, l'imagerie, immunoblotting, l'expression d'ARNm, une culture de cellules, in vitro et des essais fonctionnels tels que des réactions de leucocytes mixtes, prolifération, ou des essais de cytotoxicité.

La tolérance immunitaire à la grossesse est une période pendant laquelle se produisent les changements distincts dans le système immunitaire de la mère. Ces changements permettent à la mère de tolérer le fœtus, une greffe allogénique semi-1. Le fœtus exprime paternelle complexe majeur d'histocompatibilité (CMH) 2, et les cellules foetales ont été trouvés dans la circulation maternelle 3; Cependant, le fœtus ne soit pas rejeté 4,5. Cette énigme est pas entièrement comprise.

L'hypothèse la plus récente indique que la tolérance materno-fœtale est créé pendant le coït et la fécondation ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Avant de travailler avec les échantillons mentionnés dans le présent protocole, l'approbation éthique animale doit être donné par le Comité d'éthique de la recherche locale et les Institutional Review Boards. Lorsque vous travaillez avec du sang animal, cellules, ou des agents dangereux tel que mentionné dans ce protocole, les actions appropriées en matière de biosécurité et de sécurité de laboratoire doivent être respectées.

1. Manipulation Mouse et collecte de tissus.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

La dissection des tissus murins provenant de l'interface materno-fœtale est représenté sur la figure 1; Cette procédure comprend l'ouverture de la cavité peritoneale (figure 1A, B), les cornes utérines (Figure 1C), y compris les sites d'implantation (Figure 1D), et la collecte des tissus utérins (figure 1E), le placenta (Figure 1F), et des tissus déciduales (figure 1G) à 16,5 dpc. <.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

La collecte de données cohérentes qui enregistre les caractéristiques de l'abondance et phénotypiques de leucocytes infiltrants à l'interface materno-fœtale est essentielle pour comprendre la pathogenèse des complications liées à la grossesse. Plusieurs techniques ont été décrites qui facilitent l'isolement de l'infiltration des leucocytes à partir des tissus murins à l'interface materno-fœtale pendant la grossesse 31,38,39,43-46. Cependant, chacune de ces techniques est dif.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NGL a été soutenu par l'Initiative de l'Université Wayne State périnatale en maternelle, périnatale et santé de l'enfant. Nous tenons à remercier Maureen McGerty et Amy E. Furcron (Wayne State University) pour leur lecture critique du manuscrit.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Magentic Cell Separation
MS Columns
Cell Separator
30μm pre separation filters
Multistand
15mL safe lock conical tubes
MACS Buffer(0.5% bovine serum albumin, 2mM EDTA and 1X PBS)
Reagents
Anti-mouse CD16/CD32
Anti-mouse extracellular antibodies(Table 1)
Sodium azide
Bovine serum albumin(BSA)
LIVE/DEAD viability dye
Fixation buffer solution
FACS Buffer(1% bovine serum albumin, 0.5% sodium azide, and 1X PBS ph 7.2)
Trypan Blue Solution 0.4%
Fetal bovine serum
Additional Instruments
Incubator with shaker
Flow cytometer
Centrifuge
Vacuum system
Incubator
Water bath
Cell counter
Microscope

  1. Trowsdale, J., Betz, A. G. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol. 7 (3), 241-246 (2006).
  2. King, A., et al. Evidence for the expression of HLAA-C class I mRNA and protein by human first trimester trophoblast. J Immunol. 156 (6), 2068-2076 (1996).
  3. Bonney, E. A., Matzinger, P. The maternal immune system's interaction with circulating fetal cells. J Immunol. 158 (1), 40-47 (1997).
  4. Tafuri, A., Alferink, J., Moller, P., Hammerling, G. J., Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science. 270 (5236), 630-633 (1995).
  5. Chaouat, G., Petitbarat, M., Dubanchet, S., Rahmati, M., Ledee, N. Tolerance to the foetal allograft. Am J Reprod Immunol. 63 (6), 624-636 (2010).
  6. Robertson, S. A., et al. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 80 (5), 1036-1045 (2009).
  7. Robertson, S. A., Moldenhauer, L. M. Immunological determinants of implantation success. Int J Dev Biol. 58 (2-4), 205-217 (2014).
  8. Aluvihare, V. R., Kallikourdis, M., Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 5 (3), 266-271 (2004).
  9. Rowe, J. H., Ertelt, J. M., Xin, L., Way, S. S. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 490 (7418), 102-106 (2012).
  10. Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M., Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 150 (1), 29-38 (2012).
  11. Saito, S., Sakai, M., Sasaki, Y., Nakashima, A., Shiozaki, A. Inadequate tolerance induction may induce pre-eclampsia. J Reprod Immunol. 76 (1-2), 30-39 (2007).
  12. Lee, J., et al. A signature of maternal anti-fetal rejection in spontaneous preterm birth: chronic chorioamnionitis, anti-human leukocyte antigen antibodies, and C4d. PLoS One. 6 (2), 0016806 (2011).
  13. Steinborn, A., et al. Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol. 167 (1), 84-98 (2012).
  14. Gomez-Lopez, N., Laresgoiti-Servitje, E. T regulatory cells: regulating both term and preterm labor. Immunol Cell Biol. 90 (10), 919-920 (2012).
  15. Gomez-Lopez, N., StLouis, D., Lehr, M. A., Sanchez-Rodriguez, E. N., Arenas-Hernandez, M. Immune cells in term and preterm labor. Cell Mol Immunol. 23 (10), 46 (2014).
  16. Romero, R., Dey, S. K., Fisher, S. J. Preterm labor: one syndrome, many causes. Science. 345 (6198), 760-765 (2014).
  17. Gomez-Lopez, N., Guilbert, L. J., Olson, D. M. Invasion of the leukocytes into the fetal-maternal interface during pregnancy. J Leukoc Biol. 88 (4), 625-633 (2010).
  18. Timmons, B., Akins, M., Mahendroo, M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 21 (6), 353-361 (2010).
  19. Arck, P. C., Hecher, K. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med. 19 (5), 548-556 (2013).
  20. Erlebacher, A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 31, 387-411 (2013).
  21. Wambach, C. M., Patel, S. N., Kahn, D. A. Maternal and fetal factors that contribute to the localization of T regulatory cells during pregnancy. Am J Reprod Immunol. 71 (5), 391-400 (2014).
  22. Cross, J. C., Werb, Z., Fisher, S. J. Implantation and the placenta: key pieces of the development puzzle. Science. 266 (5190), 1508-1518 (1994).
  23. Georgiades, P., Ferguson-Smith, A. C., Burton, G. J. Comparative developmental anatomy of the murine and human definitive placentae. Placenta. 23 (1), 3-19 (2002).
  24. Croy, B. A., et al. Imaging of vascular development in early mouse decidua and its association with leukocytes and trophoblasts. Biol Reprod. 87 (5), (2012).
  25. Hofmann, A. P., Gerber, S. A., Croy, B. A. Uterine natural killer cells pace early development of mouse decidua basalis. Mol Hum Reprod. 20 (1), 66-76 (2014).
  26. Lima, P. D., Zhang, J., Dunk, C., Lye, S. J., Anne Croy, B. Leukocyte driven-decidual angiogenesis in early pregnancy. Cell Mol Immunol. , (2014).
  27. Robson, A., et al. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J. 26 (12), 4876-4885 (2012).
  28. Lash, G. E., et al. Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Hum Reprod. 25 (5), 1137-1145 (2010).
  29. Kruse, A., Merchant, M. J., Hallmann, R., Butcher, E. C. Evidence of specialized leukocyte-vascular homing interactions at the maternal/fetal interface. Eur J Immunol. 29 (4), 1116-1126 (1999).
  30. Degaki, K. Y., Chen, Z., Yamada, A. T., Croy, B. A. Delta-like ligand (DLL)1 expression in early mouse decidua and its localization to uterine natural killer cells. PLoS One. 7 (12), 28 (2012).
  31. Habbeddine, M., Verbeke, P., Karaz, S., Bobe, P., Kanellopoulos-Langevin, C. Leukocyte Population Dynamics and Detection of IL-9 as a Major Cytokine at the Mouse Fetal-Maternal Interface. PLoS One. 9 (9), (2014).
  32. Blaisdell, A., Erlbacher, E., Yamada, A. T., Croy, B. A., DeMayo, F. J., Adamson, S. L. Ch. 53. The Guide to Investigation of Mouse Pregnancy. , 619-635 (2014).
  33. Rinaldi, S. F., Catalano, R. D., Wade, J., Rossi, A. G., Norman, J. E. Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor. J Immunol. 192 (5), 2315-2325 (2014).
  34. Plaks, V., et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest. 118 (12), 3954-3965 (2008).
  35. Parr, E. L., Szary, A., Parr, M. B. Measurement of natural killer activity and target cell binding by mouse metrial gland cells isolated by enzymic or mechanical methods. J Reprod Fertil. 88 (1), 283-294 (1990).
  36. Arck, P. C., et al. Murine T cell determination of pregnancy outcome. Cell Immunol. 196 (2), 71-79 (1999).
  37. Male, V., Gardner, L., Moffett, A. Isolation of cells from the feto-maternal interface. Curr Protoc Immunol. 7 (7), 1-11 (2012).
  38. Li, L. P., Fang, Y. C., Dong, G. F., Lin, Y., Saito, S. Depletion of invariant NKT cells reduces inflammation-induced preterm delivery in mice. J Immunol. 188 (9), 4681-4689 (2012).
  39. Collins, M. K., Tay, C. S., Erlebacher, A. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J Clin Invest. 119 (7), 2062-2073 (2009).
  40. Bajpai, R., Lesperance, J., Kim, M., Terskikh, A. V. Efficient propagation of single cells Accutase-dissociated human embryonic stem cells. Mol Reprod Dev. 75 (5), 818-827 (2008).
  41. Zhang, P., Wu, X., Hu, C., Wang, P., Li, X. Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation. In Vitro Cell Dev Biol Anim. 48 (1), 30-36 (2012).
  42. Pang, S. C., Janzen-Pang, J., Tse, Y., Croy, B. A., Yamada, A. T., Croy, B. A., DeMayo, F. J., Adamson, S. L. Ch. 2. The Guide to Investigation of Mouse Pregnancy. , 21-42 (2014).
  43. Zenclussen, A. C., et al. Murine abortion is associated with enhanced interleukin-6 levels at the feto-maternal interface. Cytokine. 24 (4), 150-160 (2003).
  44. Mallidi, T. V., Craig, L. E., Schloemann, S. R., Riley, J. K. Murine endometrial and decidual NK1.1+ natural killer cells display a B220+CD11c+ cell surface phenotype. Biol Reprod. 81 (2), 310-318 (2009).
  45. Addio, F., et al. The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. J Immunol. 187 (9), 4530-4541 (2011).
  46. Shynlova, O., et al. Infiltration of myeloid cells into decidua is a critical early event in the labour cascade and post-partum uterine remodelling. J Cell Mol Med. 17 (2), 311-324 (2013).
  47. Panchision, D. M., et al. Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells. 25 (6), 1560-1570 (2007).
  48. Gartner, S. The macrophage and HIV: basic concepts and methodologies. Methods Mol Biol. , 670-672 (2014).
  49. Quan, Y., et al. Impact of cell dissociation on identification of breast cancer stem cells. Cancer Biomark. 12 (3), 125-133 (2012).
  50. Gordon, K. M., Duckett, L., Daul, B., Petrie, H. T. A simple method for detecting up to five immunofluorescent parameters together with DNA staining for cell cycle or viability on a benchtop flow cytometer. J Immunol Methods. 275 (1-2), 113-121 (2003).

Tags

Immunologie

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved