JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

母体·胎児界面におけるマウス組織からの白血球の分離

Published: May 21st, 2015

DOI:

10.3791/52866

1Department of Obstetrics & Gynecology, Wayne State University School of Medicine, 2School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, the Robinson Research Institute, The University of Adelaide, 3Department of Immunology & Microbiology, Wayne State University School of Medicine, 4Perinatology Research Branch, NICHD/NIH/DHHS

Described herein is a protocol to isolate and analyze the infiltrating leukocytes of tissues at the maternal-fetal interface (uterus, decidua, and placenta) of mice. This protocol maintains the integrity of most cell surface markers and yields enough viable cells for downstream applications including flow cytometry analysis.

妊娠中の免疫寛容は、母親の免疫系が発達中の胎児を受け入れ、育成するために、特徴的な変化を受けることが必要です。この公差は、性交中に開始受精および注入中に設立され、妊娠中を通して維持されています。母体·胎児の寛容の活性細胞および分子メディエーターは、胎盤と子宮と脱落膜組織を含む母体胎児のインターフェイスとして知られている胎児と母体組織との接触部位に濃縮されています。このインタフェースは、間質細胞および浸潤白血球で構成され、その豊かさと表現型の特徴は、妊娠の経過とともに変化します。母体胎児のインターフェイスにおける浸潤白血球は、一緒に妊娠を維持局所微小環境を作成し、好中球、マクロファージ、樹状細胞、肥満細胞、T細胞、B細胞、NK細胞およびNKT細胞を含みます。これらの細胞間の不均衡、または任意inappropそれらの表現型でriate変化は、妊娠中の病気のメカニズムと考えられています。したがって、母体胎児のインターフェイスに侵入白血球の研究は、妊娠関連の合併症を引き起こす免疫機構を解明するために不可欠です。本明細書に記載の母体胎児の界面でのマウス組織から浸潤白血球を分離するために、タンパク質分解およびコラーゲン分解酵素カクテルと強固な酵素分解に続いて穏やかな機械的解離の組み合わせを使用するプロトコルです。このプロトコルは、十分に保存された抗原性および機能的特性を有する生存可能な白血球(> 70%)の高い数の分離を可能にします。単離された白血球は、その後、免疫表現型、細胞選別、イメージング、免疫ブロット法、mRNA発現、細胞培養物、およびこのような混合白血球反応、細胞増殖、または細胞傷害性アッセイなどのインビトロの機能的アッセイを含むいくつかの技術によって分析することができます。

妊娠中の免疫寛容は、独特の変化が母親の免疫システム内で発生する期間です。これらの変更は、母親が胎児、半同種移植片1を許容することができます。胎児が父親の主要組織適合遺伝子複合体(MHC)は2抗原発現、および胎児細胞が母体循環3において見出されています。しかし、胎児は4,5を拒否されていません。この謎は完全には理解されていません。

最新の仮説は、母体·胎児寛容は性交と受精6,7中に作成され、満期妊娠8-10を維持するために維持されていることを述べています。この母体·胎児寛容の内訳は、妊娠10〜16の初期および後期の段階で病気のメカニズムを考えられています。母体胎児の耐性は、Mac、T細胞(調節性T細胞、Th1細胞、Th2細胞、およびTh17細胞)を含む様々な白血球サブ集団の参加を含みますrophages、好中球、マスト細胞、NK細胞、及びNKT細胞、樹状細胞、及びB細胞、妊娠15,17-19を通して密度および局在のその変化。母親の免疫系が胎児性抗原20,21と相互作用する解剖学的部位-母体·胎児許容範囲は、母体·胎児の界面20で濃縮されています。

胎児の絨毛外栄養膜細胞が子宮粘膜22-24

Log in or to access full content. Learn more about your institution’s access to JoVE content here

このプロトコルに記載されたサンプルを使用して作業する前に、動物の倫理的な承認は、現地研究倫理委員会及び治験審査委員会によって与えられなければなりません。このプロトコルで述べたように、動物の血液、細胞、または危険な薬剤で作業している場合は、適切なバイオセーフティと実験室の安全行動に従わなければなりません。

1.マウスの取扱い及び組織収集<.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

母体·胎児のインターフェイスからのマウスの組織の切開は、 図1に示されています。この手順は、移植部位( 図1D)を含む、腹腔( 図1A、B)、子宮角( 図1C)を開くと、子宮組織の集合( 図1E)、胎盤( 図1F)、および脱落膜組織16.5で( 図1G)が DPC。 図2は、単離されたマクロファージの.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

母体·胎児の界面に浸潤白血球の豊かさと表現型の特徴を記録する一貫性のあるデータの収集は、妊娠関連の合併症の病因を理解するために不可欠です。いくつかの技術は、妊娠31,38,39,43-46を通して母体胎児の界面でのマウス組織からの白血球浸潤の単離を容易にすることが記載されています。しかし、それぞれの技術は、異なる別の酵素を使用するか、またはそれらの組み合わせを?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NGLは、ウェイン州立大学周産期母子でイニシアティブ、周産期や小児保健によってサポートされていました。私たちは感謝して、原稿の彼らの重要な読書のためのモーリーンMcGertyとエイミーE. Furcron(ウェイン州立大学)を認めます。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Magentic Cell Separation
MS Columns
Cell Separator
30μm pre separation filters
Multistand
15mL safe lock conical tubes
MACS Buffer(0.5% bovine serum albumin, 2mM EDTA and 1X PBS)
Reagents
Anti-mouse CD16/CD32
Anti-mouse extracellular antibodies(Table 1)
Sodium azide
Bovine serum albumin(BSA)
LIVE/DEAD viability dye
Fixation buffer solution
FACS Buffer(1% bovine serum albumin, 0.5% sodium azide, and 1X PBS ph 7.2)
Trypan Blue Solution 0.4%
Fetal bovine serum
Additional Instruments
Incubator with shaker
Flow cytometer
Centrifuge
Vacuum system
Incubator
Water bath
Cell counter
Microscope

  1. Trowsdale, J., Betz, A. G. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol. 7 (3), 241-246 (2006).
  2. King, A., et al. Evidence for the expression of HLAA-C class I mRNA and protein by human first trimester trophoblast. J Immunol. 156 (6), 2068-2076 (1996).
  3. Bonney, E. A., Matzinger, P. The maternal immune system's interaction with circulating fetal cells. J Immunol. 158 (1), 40-47 (1997).
  4. Tafuri, A., Alferink, J., Moller, P., Hammerling, G. J., Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science. 270 (5236), 630-633 (1995).
  5. Chaouat, G., Petitbarat, M., Dubanchet, S., Rahmati, M., Ledee, N. Tolerance to the foetal allograft. Am J Reprod Immunol. 63 (6), 624-636 (2010).
  6. Robertson, S. A., et al. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 80 (5), 1036-1045 (2009).
  7. Robertson, S. A., Moldenhauer, L. M. Immunological determinants of implantation success. Int J Dev Biol. 58 (2-4), 205-217 (2014).
  8. Aluvihare, V. R., Kallikourdis, M., Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 5 (3), 266-271 (2004).
  9. Rowe, J. H., Ertelt, J. M., Xin, L., Way, S. S. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 490 (7418), 102-106 (2012).
  10. Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M., Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 150 (1), 29-38 (2012).
  11. Saito, S., Sakai, M., Sasaki, Y., Nakashima, A., Shiozaki, A. Inadequate tolerance induction may induce pre-eclampsia. J Reprod Immunol. 76 (1-2), 30-39 (2007).
  12. Lee, J., et al. A signature of maternal anti-fetal rejection in spontaneous preterm birth: chronic chorioamnionitis, anti-human leukocyte antigen antibodies, and C4d. PLoS One. 6 (2), 0016806 (2011).
  13. Steinborn, A., et al. Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol. 167 (1), 84-98 (2012).
  14. Gomez-Lopez, N., Laresgoiti-Servitje, E. T regulatory cells: regulating both term and preterm labor. Immunol Cell Biol. 90 (10), 919-920 (2012).
  15. Gomez-Lopez, N., StLouis, D., Lehr, M. A., Sanchez-Rodriguez, E. N., Arenas-Hernandez, M. Immune cells in term and preterm labor. Cell Mol Immunol. 23 (10), 46 (2014).
  16. Romero, R., Dey, S. K., Fisher, S. J. Preterm labor: one syndrome, many causes. Science. 345 (6198), 760-765 (2014).
  17. Gomez-Lopez, N., Guilbert, L. J., Olson, D. M. Invasion of the leukocytes into the fetal-maternal interface during pregnancy. J Leukoc Biol. 88 (4), 625-633 (2010).
  18. Timmons, B., Akins, M., Mahendroo, M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 21 (6), 353-361 (2010).
  19. Arck, P. C., Hecher, K. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med. 19 (5), 548-556 (2013).
  20. Erlebacher, A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 31, 387-411 (2013).
  21. Wambach, C. M., Patel, S. N., Kahn, D. A. Maternal and fetal factors that contribute to the localization of T regulatory cells during pregnancy. Am J Reprod Immunol. 71 (5), 391-400 (2014).
  22. Cross, J. C., Werb, Z., Fisher, S. J. Implantation and the placenta: key pieces of the development puzzle. Science. 266 (5190), 1508-1518 (1994).
  23. Georgiades, P., Ferguson-Smith, A. C., Burton, G. J. Comparative developmental anatomy of the murine and human definitive placentae. Placenta. 23 (1), 3-19 (2002).
  24. Croy, B. A., et al. Imaging of vascular development in early mouse decidua and its association with leukocytes and trophoblasts. Biol Reprod. 87 (5), (2012).
  25. Hofmann, A. P., Gerber, S. A., Croy, B. A. Uterine natural killer cells pace early development of mouse decidua basalis. Mol Hum Reprod. 20 (1), 66-76 (2014).
  26. Lima, P. D., Zhang, J., Dunk, C., Lye, S. J., Anne Croy, B. Leukocyte driven-decidual angiogenesis in early pregnancy. Cell Mol Immunol. , (2014).
  27. Robson, A., et al. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J. 26 (12), 4876-4885 (2012).
  28. Lash, G. E., et al. Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Hum Reprod. 25 (5), 1137-1145 (2010).
  29. Kruse, A., Merchant, M. J., Hallmann, R., Butcher, E. C. Evidence of specialized leukocyte-vascular homing interactions at the maternal/fetal interface. Eur J Immunol. 29 (4), 1116-1126 (1999).
  30. Degaki, K. Y., Chen, Z., Yamada, A. T., Croy, B. A. Delta-like ligand (DLL)1 expression in early mouse decidua and its localization to uterine natural killer cells. PLoS One. 7 (12), 28 (2012).
  31. Habbeddine, M., Verbeke, P., Karaz, S., Bobe, P., Kanellopoulos-Langevin, C. Leukocyte Population Dynamics and Detection of IL-9 as a Major Cytokine at the Mouse Fetal-Maternal Interface. PLoS One. 9 (9), (2014).
  32. Blaisdell, A., Erlbacher, E., Yamada, A. T., Croy, B. A., DeMayo, F. J., Adamson, S. L. Ch. 53. The Guide to Investigation of Mouse Pregnancy. , 619-635 (2014).
  33. Rinaldi, S. F., Catalano, R. D., Wade, J., Rossi, A. G., Norman, J. E. Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor. J Immunol. 192 (5), 2315-2325 (2014).
  34. Plaks, V., et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest. 118 (12), 3954-3965 (2008).
  35. Parr, E. L., Szary, A., Parr, M. B. Measurement of natural killer activity and target cell binding by mouse metrial gland cells isolated by enzymic or mechanical methods. J Reprod Fertil. 88 (1), 283-294 (1990).
  36. Arck, P. C., et al. Murine T cell determination of pregnancy outcome. Cell Immunol. 196 (2), 71-79 (1999).
  37. Male, V., Gardner, L., Moffett, A. Isolation of cells from the feto-maternal interface. Curr Protoc Immunol. 7 (7), 1-11 (2012).
  38. Li, L. P., Fang, Y. C., Dong, G. F., Lin, Y., Saito, S. Depletion of invariant NKT cells reduces inflammation-induced preterm delivery in mice. J Immunol. 188 (9), 4681-4689 (2012).
  39. Collins, M. K., Tay, C. S., Erlebacher, A. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J Clin Invest. 119 (7), 2062-2073 (2009).
  40. Bajpai, R., Lesperance, J., Kim, M., Terskikh, A. V. Efficient propagation of single cells Accutase-dissociated human embryonic stem cells. Mol Reprod Dev. 75 (5), 818-827 (2008).
  41. Zhang, P., Wu, X., Hu, C., Wang, P., Li, X. Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation. In Vitro Cell Dev Biol Anim. 48 (1), 30-36 (2012).
  42. Pang, S. C., Janzen-Pang, J., Tse, Y., Croy, B. A., Yamada, A. T., Croy, B. A., DeMayo, F. J., Adamson, S. L. Ch. 2. The Guide to Investigation of Mouse Pregnancy. , 21-42 (2014).
  43. Zenclussen, A. C., et al. Murine abortion is associated with enhanced interleukin-6 levels at the feto-maternal interface. Cytokine. 24 (4), 150-160 (2003).
  44. Mallidi, T. V., Craig, L. E., Schloemann, S. R., Riley, J. K. Murine endometrial and decidual NK1.1+ natural killer cells display a B220+CD11c+ cell surface phenotype. Biol Reprod. 81 (2), 310-318 (2009).
  45. Addio, F., et al. The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. J Immunol. 187 (9), 4530-4541 (2011).
  46. Shynlova, O., et al. Infiltration of myeloid cells into decidua is a critical early event in the labour cascade and post-partum uterine remodelling. J Cell Mol Med. 17 (2), 311-324 (2013).
  47. Panchision, D. M., et al. Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells. 25 (6), 1560-1570 (2007).
  48. Gartner, S. The macrophage and HIV: basic concepts and methodologies. Methods Mol Biol. , 670-672 (2014).
  49. Quan, Y., et al. Impact of cell dissociation on identification of breast cancer stem cells. Cancer Biomark. 12 (3), 125-133 (2012).
  50. Gordon, K. M., Duckett, L., Daul, B., Petrie, H. T. A simple method for detecting up to five immunofluorescent parameters together with DNA staining for cell cycle or viability on a benchtop flow cytometer. J Immunol Methods. 275 (1-2), 113-121 (2003).

Tags

99

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved