JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Targeted cell delivery is useful in a variety of biomedical applications. The goal of this protocol is to use superparamagnetic iron oxide nanoparticles (SPION) to label cells and thereby enable magnetic cell targeting approaches for a high degree of control over cell delivery and localization.

Abstract

Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.

Introduction

Targeted delivery and capture of cells to specific sites within the body is desirable for a variety of biomedical applications. Delivery of neural stem cells to the brain by MRI-guided focused ultrasound has been proposed as a possible treatment option for neurodegenerative disease, traumatic brain injury, and stroke1. Mesenchymal stem cells are being studied for their ability to deliver anti-cancer drugs to tumors due to their natural tumor-tropic properties2,3. Cardiac stem cells have been delivered to the heart as a possible treatment for myocardial infarction4,5. Vascular stents have been developed with CD34 antibodies to capture circulating progenitor cells6. While promising, these cell targeting approaches present drawbacks including lack of cell specificity, inconsistent cell retention, and off-target cell delivery.

The overall goal of the current method is to enable magnetically directed targeting of cells for a variety of cell delivery and sorting applications. Magnetic targeting allows for controlled delivery of specific cells to a specific target site with minimal off-target effects7. The magnetic fields can be generated by implanted or external devices to safely direct the movement of magnetically-labeled cells within the body8. Numerous research efforts have focused on magnetically directed targeting of stem cells to injured tissues such as the heart9-14, retina15, lung16, skin17, spinal cord18,19, bone20, liver21, and muscle22,23 in order to improve regeneration outcomes.

Magnetic targeting of cells has also been studied extensively as a means to endothelialize implantable cardiovascular devices. A uniform and complete endothelium provides a barrier between the device and circulating blood elements to mitigate thrombosis and inflammation. Endothelial cells can be delivered to the device either prior to implantation or via the vascular system following implantation. In both cases, magnetic fields are used to capture cells to the surface of the device and retain the cells when subjected to the shear stress generated by circulating blood. Magnetic vascular stents24-27 and vascular grafts28 have both been fabricated and tested for this purpose.

Magnetic cell targeting requires a strategy for labeling cells with magnetic carrier particles. These particles can be bound to the surface of cells via antibodies or ligand/receptor pairs or they can be endocytosed into the cells. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and readily endocytosed by a variety of cell types29. These particles effectively render a cell responsive to magnetic fields and are naturally degraded over time. SPIONs provide a straightforward and safe means of magnetically labeling cells in culture for a variety of magnetic targeting and sorting applications. A method for synthesizing SPIONs with a magnetite (Fe3O4) core and poly(lactic-co-glycolic acid) (PLGA) shell is provided. In addition, a method for labeling cells in culture with SPIONs is provided.

Protocol

1. Synthesis of Magnetite Gel

  1. Wash all glassware by using concentrated hydrochloric acid followed by deionized water followed by ethyl alcohol. Allow to dry O/N, preferably in a drying oven.
    CAUTION! hydrochloric acid is harmful – wear personal protective equipment and work in a fume hood; ethyl alcohol is harmful – wear personal protective equipment.
  2. Use a Dreschel bottle to de-gas 500 ml of deionized H2O by gently bubbling N2 gas for 30 mins.
  3. Set-up the magnetite synthesis apparatus within a chemical fume hood.
    1. Place a 500 ml three-neck round-bottom flask within an isomantle heater and secure the center neck using a clamp and stand.
    2. Install a rubber septum into one of the round-bottom flask’s side necks and a reflux condenser with a rubber septum into the remaining side neck. Continuously run cold water through the reflux condenser.
    3. Puncture the round-bottom flask’s rubber septum with a needle connected to an N2 gas line and puncture the reflux condenser’s rubber septum with a needle connected to a gas line running to a bubbler (i.e., flask with water) to visualize gas outflow.
    4. Install a blade paddle into the round-bottom flask’s center neck via a paddle adapter. Attach the blade paddle’s shaft to an overhead stirrer mounted onto a stand.
  4. Purge the round-bottom flask with N2 gas and leave N2 gas flowing at a low but detectable rate.
  5. Remove the reflux condenser from the round-bottom flask and add 1.000 g of iron(III) chloride, 0.6125 g of iron(II) chloride tetrahydrate, and 50 ml of de-gassed H2O.
    CAUTION! iron(III) chloride and iron(II) chloride tetrahydrate are harmful – wear personal protective equipment.
  6. Replace the reflux condenser and stir at 1,000 rpm while heating to 50 °C. Stirring under these conditions produces 10 nm diameter magnetite nanoparticles.
  7. Once at 50 °C, add 10 ml of 28% ammonium hydroxide solution by injecting through the rubber septum in the round-bottom flask while still stirring.
    CAUTION! ammonium hydroxide is harmful – wear personal protective equipment.
    NOTE: The ammonium hydroxide solution is used to precipitate the magnetite and the solution should turn black.
  8. Remove the rubber septum and N2 gas line from the round-bottom flask and heat to 90 °C to boil off the ammonia gas while still stirring.
    NOTE: It is optional to maintain the flow of N2 into the round-bottom flask by puncturing the reflux condenser’s rubber septum, however, oxidation of magnetite to maghemite is negligible during this step.
  9. Once at 90 °C, add 1 ml of oleic acid to the round-bottom flask while still stirring. The oleic acid is used to coat the magnetite nanoparticles to form magnetite gel.
    CAUTION! oleic acid is harmful – wear personal protective equipment.
  10. Replace the rubber septum and N2 gas line onto the round-bottom flask and remove the reflux condenser.
  11. Turn off heat and stir at 500 rpm for 2 hr.
  12. Remove the round-bottom flask from the isomantle heater and decant any remaining liquid while using a strong magnet held against the bottom of the flask to retain the magnetite gel.
    CAUTION! handle the strong magnet with extreme care to avoid damage or injury.
  13. Allow magnetite gel to air-dry O/N (optional).

2. Purification of Magnetite Gel

  1. Add 40 ml of hexane into the round-bottom flask to dissolve the magnetite gel
    CAUTION! hexane is harmful – wear personal protective equipment and work in a fume hood.
  2. Use a separatory funnel with 40 ml of de-gassed H2O to remove residual H2O from the magnetite solution.
    1. Slowly pour the magnetite solution onto the H2O within the separatory funnel and gently swirl the two-phase liquid for 5 mins.
    2. Drain out and discard the lower aqueous fraction.
    3. Slowly add 40 ml of de-gassed H2O to the separatory funnel such that it settles beneath the magnetite solution and gently swirl and drain as before.
    4. Repeat to wash for a third time.
  3. Transfer magnetite solution to an Erlenmeyer flask, add a few spatulas worth of anhydrous sodium sulfate, and swirl to remove any remaining residual H2O from the magnetite solution.
  4. Filter the magnetite solution through 1 µm filter paper in a filter funnel to remove the sodium sulfate and residual H2O.
    NOTE: Vacuum assistance is recommended.
  5. Transfer the magnetite solution to a 50 ml evaporating flask and use a rotary evaporator to evaporate the hexane for 2 h with the following conditions: moderate rotation speed, vacuum applied, evaporating flask in a 50 °C water bath, and 24 °C water circulating through the condenser.
    NOTE: Optionally, store the magnetite gel prior to coating with PLGA.

3. Coating of Magnetite Nanoparticles with PLGA Shell

  1. Dissolve 3.60 g of PLGA (75/25 blend) in 240 ml of ethyl acetate to create a 1.5% (m/v) solution. CAUTION: ethyl acetate is harmful – wear personal protective equipment and work in a fume hood.
  2. Dissolve 25.00 g of Pluronic F-127 in 500 ml of de-gassed H2O using a magnetic stirrer to create a 5.0% (m/v) solution.
    NOTE: Pluronic F-127 is a non-ionic amphiphilic block copolymer that acts as a biocompatible surfactant. It helps to stabilize the oil-in-water emulsion in step 3.3.2.
  3. Using a microspatula, collect the magnetite gel into six 0.040 g aliquots within weighted glass vials. Perform the following coating and washing process for each aliquot.
    NOTE: The aliquots are necessary to ensure efficient handling and magnetic decantation, which will maximize purity and yield while minimizing degradation prior to freeze-drying in step 4.
    1. Add a 0.040 g aliquot of magnetite gel and 40 ml of the PLGA solution to a plastic beaker and sonicate in an ultrasonic cleaner for 10 mins.
    2. Add 80 ml of the Pluronic solution to the plastic beaker and immediately emulsify with a laboratory mixer at the highest setting for 7 mins to form the PLGA coating on the magnetite nanoparticles as an oil-in-water emulsion.
    3. Immediately dilute the SPION solution in 1 L of deionized H2O and sonicate for 1 h in a chemical fume hood to evaporate the ethyl acetate.
    4. Place a strong magnet next to the SPION solution and gently stir to collect brownish SPIONs at the magnet.
      NOTE: It may be necessary to intermittently stir for several hours before the solution turns whitish indicating that most of the SPIONs have been collected.
    5. Decant the aqueous solution while retaining the SPIONs in the beaker with the magnet.
    6. Wash the SPIONs three times as follows.
      1. Suspend the SPIONs in 1 L of deionized H2O.
      2. Sonicate the SPION solution for 20 mins.
      3. Place a strong magnet next to the SPION solution and gently stir to collect brownish SPIONs at the magnet. It may be necessary to intermittently stir for several hours before the solution turns clear indicating that most of the SPIONs have been collected.
      4. Decant the aqueous solution while retaining the SPIONs in the beaker with the magnet.
  4. Collect the SPIONs synthesized from each of the six magnetite gel aliquots into a single weighted glass vial as an aqueous suspension. Optionally decant excess water magnetically as needed.

4. Freeze-drying of SPIONs

  1. Freeze the SPION solution.
  2. Freeze-dry the SPION solution O/N in a lyophilizer.
  3. Weigh the freeze-dried SPIONs. Freeze-dried SPIONs can be stored at -20 °C until used for cell labeling.
    NOTE: Storage at -20 °C dramatically reduces degradation kinetics and increases shelf life.

5. Labeling of Cells with SPIONs

  1. Suspend an aliquot of SPIONs in phosphate-buffered saline (PBS) at a concentration of 40 mg/ml and sonicate for 30 mins.
  2. Add the SPION solution to a nearly confluent flask of cells at a concentration of 5 µl/ml of cell culture medium. Ensure even distribution by gently rocking the flask.
  3. Incubate the cells for 16 hr at 37 °C.
  4. Gently aspirate culture medium and wash cells twice with PBS.
  5. Collect magnetically-labeled cells and use for experiments.
  6. Unused SPION solution can be stored at 4 °C and should be used within a few months. Sonicate for 30 mins before each use.

Results

Magnetite nanoparticles are approximately 10 nm in diameter as a result of stirring an aqueous solution of iron(III) chloride and iron(II) chloride tetrahydrate at 50 °C and 1,000 rpm (Figure 1). These results demonstrate successful synthesis of magnetite nanoparticles. It is important to verify the size and shape of magnetite nanoparticles taken from a small sample of the batch when attempting the synthesis for the first time. Transmission electron microscopy (TEM) is the preferred method for visua...

Discussion

As with any nanoparticle synthesis protocol, the purity of the reactant chemicals is critical for achieving high quality SPIONs that will have minimal cytotoxic effects. It is therefore important to purchase very pure reagents including oleic acid (≥99%), iron(II) chloride tetrahydrate (≥99.99%), iron(III) chloride (≥99.99%), ethyl acetate (HPLC grade, ≥99.9%), hexane (HPLC grade, ≥97.0%), ammonium hydroxide (≥99.99%), and sodium sulfate (≥99.0%). It is of particular importance t...

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgements

The authors wish to acknowledge funding from the European Regional Development Fund – FNUSA-ICRC (no. CZ.1.05/ 1.1.00/ 02.0123), the American Heart Association Scientist Development Grant (AHA #06-35185N), and the National Institutes of Health (NIH #T32HL007111).

Materials

NameCompanyCatalog NumberComments
Ammonium Hydroxide solution, 28% NH3 in H2O, ≥99.99% trace metal basisSigma-Aldrich338818-100ML Harmful reagent - wear personal protective equipment
Dreschel bottle, 500 mlAce Glass5516-16
Ethyl Acetate, CHROMASOLVR Plus, for HPLC, 99.9% Sigma-Aldrich650528-1LHarmful reagent - wear personal protective equipment & work in fume hood
Ethyl alcoholSigma-AldrichE7023Harmful reagent - wear personal protective equipment
Evaporating flask, 50 ml, 24/40 jointSigma-AldrichZ515558For use with rotoevaporator
Filter paper, 3 cm dia, grade 1Fisher09-805PFor use with glass filter funnel
Glass beakers, 1 LFisherFB-101-1000For washing SPIONs
Glass filter funnel, vacuum hose adapter, fits 24/40, 30 mLFisherK954100-0344 
Glass vial capsFisher03-391-46For use with glass vials
Glass vials, 2 mlFisher03-391-44For collecting magnetite gel & SPIONs
Hexane, CHROMASOLVR, for HPLC, ≥97.0% (GC)Sigma-Aldrich34859-1L Harmful reagent - wear personal protective equipment & work in fume hood
Hydrochloric acidSigma-AldrichH1758Harmful reagent - wear personal protective equipment & work in fume hood
Iron(II) chloride tetrahydrate, ≥99.99% trace metals basis Sigma-Aldrich380024-5GHarmful reagent - wear personal protective equipment
Iron(III) chloride anhydrous, powder, ≥99.99% trace metals basisSigma-Aldrich451649-1GHarmful reagent - wear personal protective equipment
Isomantle heater, 500 mLVoight GlobalEM0500/CEX1
Laboratory mixerSilversonL5M-A
LyophilizerLabconco7670520
MicrospatulasFisher21-401-25AFor transfering magnetite gel
NdFeB magnet, 1 in x 1 in x 1 inAmazing MagnetsC1000H-MVery strong magnet, handle with care
Oleic acid, ≥99% (GC)Sigma-AldrichO1008-5G Store in freezer; Harmful reagent - wear personal protective equipment
Overhead stirrerIKA2572201
Overhead stirrer clampIKA2664000For use with overhead stirrer
Overhead stirrer H-standIKA1412000For use with overhead stirrer
Phosphate buffered salineLife Technologies10010-023
Plastic beakers, 250 mlFisher02-591-28
PLGA PURASORB PDLG (75/25 blend)PuracPDLG 7502PDLG 7502A may be used as well; Store in freezer
Pluronic F-127 powder, BioReagent, suitable for cell cultureSigma-AldrichP2443-250G 
PTFE expandable blade paddle, 8 mm diaSciQuipSP4018
PTFE vessel adapter, fits 24/40, 8 mm dia paddleMonmouth ScientificPTFE Vessel Adaptor A480For use with PTFE expandable blade paddle
Recirculating chillerClarkson696613For use with rotoevaporator
Reflux condenser, fits 24/40, 250 mmAce Glass5997-133
RotoevaporatorClarkson216949
Rubber septa, fits 24/40Ace Glass9096-56
Separatory funnel with stopper, 250 mlFisher10-438E
Sodium sulfate ACS reagent, ≥99.0%, anhydrous, granularSigma-Aldrich239313-500G 
Three neck round bottom flask, angled, 24/40 joints, 500 mlAce Glass6948-16
Ultrasonic cleaner perforated panFisher15-335-20AFor use with ultrasonic cleaner
Ultrasonic cleaner, 2.8 LFisher15-335-20
Vacuum controllerClarkson216639For use with rotoevaporator (optional)
Vacuum pumpClarkson219959For use with rotoevaporator

References

  1. Burgess, A., et al. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS One. 6 (11), e27877 (2011).
  2. Nguyen, K. T. Mesenchymal Stem Cells as Targeted Cell Vehicles to Deliver Drug-loaded Nanoparticles for Cancer Therapy. J Nanomed Nanotechol. 4 (1), e128 (2013).
  3. Kean, T. J., Lin, P., Caplan, A. I., Dennis, J. E. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells Int. , 732742 (2013).
  4. Suzuki, K., et al. Targeted cell delivery into infarcted rat hearts by retrograde intracoronary infusion: distribution, dynamics, and influence on cardiac function. Circulation. 110 (11 Suppl 1), II225-II230 (2004).
  5. Garbern, J. C., Lee, R. T. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 12 (6), 689-698 (2013).
  6. Duckers, H. J., et al. Accelerated vascular repair following percutaneous coronary intervention by capture of endothelial progenitor cells promotes regression of neointimal growth at long term follow-up: final results of the Healing II trial using an endothelial progenitor cell capturing stent (Genous R stent). EuroIntervention. 3 (3), 350-358 (2007).
  7. Pan, Y., Du, X., Zhao, F., Xu, B. Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev. 41 (7), 2912-2942 (2012).
  8. Huang, Z. Y., et al. Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics. Biomaterials. 31 (8), 2130-2140 (2010).
  9. Shen, Y., et al. Comparison of Magnetic Intensities for Mesenchymal Stem Cell Targeting Therapy on Ischemic Myocardial Repair: High Magnetic Intensity Improves Cell Retention but Has No Additional Functional Benefit. Cell Transplant. , (2014).
  10. Cheng, K., et al. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat Commun. 5, 4880 (2014).
  11. Vandergriff, A. C., et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials. 35 (30), 8528-8539 (2014).
  12. Huang, Z., et al. Magnetic targeting enhances retrograde cell retention in a rat model of myocardial infarction. Stem Cell Res Ther. 4 (6), 149 (2013).
  13. Chaudeurge, A., et al. Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention. Cell Transplant. 21 (4), 679-691 (2012).
  14. Cheng, K., et al. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res. 106 (10), 1570-1581 (2010).
  15. Yanai, A., et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 21 (6), 1137-1148 (2012).
  16. Ordidge, K. L., et al. Coupled cellular therapy and magnetic targeting for airway regeneration. Biochem Soc Trans. 42 (3), 657-661 (2014).
  17. El Haj, A. J., et al. An in vitro model of mesenchymal stem cell targeting using magnetic particle labelling. J Tissue Eng Regen Med. , (2012).
  18. Vanecek, V., et al. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int J Nanomedicine. 7, 3719-3730 (2012).
  19. Sasaki, H., et al. Therapeutic effects with magnetic targeting of bone marrow stromal cells in a rat spinal cord injury model. Spine (Phila Pa 1976). 36 (12), 933-938 (2011).
  20. Oshima, S., et al. Enhancement of bone formation in an experimental bony defect using ferumoxide-labelled mesenchymal stromal cells and a magnetic targeting system. J Bone Joint Surg Br. 92 (11), 1606-1613 (2010).
  21. Luciani, A., et al. Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver. Eur Radiol. 19 (5), 1087-1096 (2009).
  22. Oshima, S., Kamei, N., Nakasa, T., Yasunaga, Y., Ochi, M. Enhancement of muscle repair using human mesenchymal stem cells with a magnetic targeting system in a subchronic muscle injury model. J Orthop Sci. 19 (3), 478-488 (2014).
  23. Ohkawa, S., et al. Magnetic targeting of human peripheral blood CD133+ cells for skeletal muscle regeneration. Tissue Eng Part C Methods. 19 (8), 631-641 (2013).
  24. Tefft, B. J., et al. Magnetizable Duplex Steel Stents Enable Endothelial Cell Capture. Ieee T Magn. 49 (1), 463-466 (2013).
  25. Uthamaraj, S., et al. Design and validation of a novel ferromagnetic bare metal stent capable of capturing and retaining endothelial cells. ABME. 42 (12), 2416-2424 (2014).
  26. Polyak, B., et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci U.S.A. 105 (2), 698-703 (2008).
  27. Pislaru, S. V., et al. Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol. 48 (9), 1839-1845 (2006).
  28. Pislaru, S. V., et al. Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation. 114 (1 Suppl), 314-318 (2006).
  29. Wang, Y. X., Xuan, S., Port, M., Idee, J. M. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des. 19 (37), 6575-6593 (2013).
  30. Yellen, B. B., et al. Targeted drug delivery to magnetic implants for therapeutic applications. J Magn Magn Mater. 293 (1), 647-654 (2005).
  31. Granot, D., et al. Clinically viable magnetic poly(lactide-co-glycolide) particles for MRI-based cell tracking. Magn Reson Med. , (2013).
  32. Levy, M., et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 32 (16), 3988-3999 (2011).
  33. Mirshafiee, V., Mahmoudi, M., Lou, K., Cheng, J., Kraft, M. L. Protein corona significantly reduces active targeting yield. Chem Commun (Camb). 49 (25), 2557-2559 (2013).
  34. Salvati, A., et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 8 (2), 137-143 (2013).
  35. Landazuri, N., et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small. 9 (23), 4017-4026 (2013).
  36. Sun, J. H., et al. In vitro labeling of endothelial progenitor cells isolated from peripheral blood with superparamagnetic iron oxide nanoparticles. Mol Med Rep. 6 (2), 282-286 (2012).
  37. Zhang, B., et al. Detection of viability of transplanted beta cells labeled with a novel contrast agent - polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging. Contrast Media Mol Imaging. 7 (1), 35-44 (2012).
  38. Song, M., et al. Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Korean J Radiol. 8 (5), 365-371 (2007).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Cell LabelingCell TargetingSuperparamagnetic Iron Oxide Nanoparticles SPIONMagnetic Cell TargetingPLGA magnetite SPIONsMagnetic FieldsBiomedical ApplicationsCell SortingContrast AgentDrug DeliveryGene DeliveryDiagnostic AssaysHyperthermia

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved