JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

微流控采用共培养开发设备牙胚支配分析

Published: August 14th, 2015

DOI:

10.3791/53114

1Institute of Oral Biology, Unit of Orofacial Development and Regeneration, University of Zurich

Co-cultures represent a valuable method to study the interactions between nerves and target tissues and organs. Microfluidic systems allow co-culturing ganglia and whole developing organs or tissues in different culture media, thus representing a valuable tool for the in vitro study of the crosstalk between neurons and their targets.

支配起着器官和组织的发育,稳态和再生的关键作用。然而,这些现象背后的机制尚未很好地理解爱好。特别是,在神经支配牙齿发育和再生的作用被忽略。

几个在体内的研究已经在多种动物模型的发展和修复过程提供了有关牙齿组织的神经支配的模式的重要信息。然而,大多数这些方法不是最优的,突出的神经纤维和靶器官和组织之间的相互作用的分子基础。

共培养物构成一个有价值的方法进行调查,并操纵一个受控和隔离的环境神经纤维和齿之间的相互作用。在过去的几十年中,使用相同的培养基中常规共培养物已进行很短的时间( 例如 ,2天)研究制定对感觉神经纤维口腔和牙齿组织的吸引力和排斥力的影响。但是,延长培养期需要调查支配牙齿形态发生和细胞分化的影响。

微流体系统允许共培养的神经元和不同类型的细胞在它们的合适的培养基。我们最近证明,三叉神经节(TG)和牙齿能够存活的很长一段时间时,共培养在微流体装置,并且它们在这些条件下保持它们显示在体内同一神经支配模式。

在此基础上,我们将描述如何分离和共培养显影三叉神经节和牙胚在微流体的共培养system.This协议描述了一个简单而灵活的方式来共培养神经节/神经和靶组织,并研究的作用在对照这种相互作用的特定分子olled和孤立的环境。

支配起着器官和组织1,2的发育,稳态和再生的关键作用。此外,支配参与干细胞增殖,动员和分化3的调节- 5。实际上,实现了在颜面部复杂的组织最近的研究已经表明,唾液的发育和再生腺体6,7-期间副交感神经是必要的上皮的祖细胞的功能。类似地,已经证明,神经支配是必要的味蕾8的开发和维护- 11。因此,为了分析如牙神经支配在其他重要的口面部的器官和组织的发展却忽视的作用是很重要的。

尽管成年齿的丰富的神经支配的,相反于主体,开发板的所有其它器官和组织平齿开始在最早产后阶段进行支配。牙齿作为发展的口腔外胚层和中颅神经嵴源性间充质顺序和相互交流的结果。这些相互作用产生的上皮衍生成釉细胞和间充质来源的牙本质细胞,它们负责牙釉质和牙本质,分别为12的形成。从颈上神经节三叉神经节和交感神经感觉神经支配牙齿的成人13 - 15。在胚胎发生期间,神经纤维从向显影牙胚三叉神经节项目发出并逐步包围他们,但他们不渗透到牙乳头间质13。神经纤维进入牙髓间充质在与成牙本质细胞分化和牙本质基质沉积16关联更先进的发展阶段。牙髓的神经支配是并发症eted不久后在口腔中13牙齿萌出。先前的研究已经表明,各种脑信号和神经营养蛋白牙胚16期间参与神经支配的调....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

所有的小鼠根据瑞士动物福利法和符合州兽医办公室,苏黎世的规定维护和处理。

1.准备材料解剖,文化传媒,微流体装置

  1. 高压釜显微解剖镊子和剪刀(121℃,灭菌时间20分钟),并把它们存储在无菌容器中。
  2. 通过将它们在1M HCl中24小时,在定轨摇床上,在37℃消毒盖玻片(24毫米×24毫米)。用无菌,蒸馏水用乙醇99%冲洗三次,2 O和三次。干燥然后将?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

这些结果表明,分离的三叉神经节用的微流体装置的一个隔室生长,此外,所分离的牙胚的发展是持续的时间在微流体装置的另一个室长。不同的培养基中使用了两个室,两个室之间的微槽允许扩展从朝显影牙胚三叉神经节轴突的。 图3表示神经丝通过免疫荧光37可视化,在鼠标的共培养胚胎三叉神经节和小鼠胚胎门齿中所描述的微流体的共培养系统。鼠标门牙发展体内

Log in or to access full content. Learn more about your institution’s access to JoVE content here

上一页神经支配的体外研究都是基于传统的联合培养三叉神经节和牙齿的组织或细胞26,28,29的。这些研究进行主要调查这些细胞或组织上的感觉轴突38上的吸引力的影响。虽然引进外地显著的进步,几个技术问题被提出。牙胚开始培养后37几天就变质。基于这些观察,生长的神经元和牙齿在相同的培养条件影响涉及这两个组织之间的串扰的分子的任何最终分?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The work was funded by the University of Zurich. The authors would like to thank Estrela Neto and Dr. Meriem Lamghari for helping in establishing the co-culture conditions.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
AXIS Axon Isolation DevicesMilliporeAX15010-TCMicrochannels of different lenght are available
LamininSigma AldrichL2020
NeurobasalGibco21103-049
B27Gibco17504
Recombinant Mouse beta-NGFR&D Systems1156-NG-100Human and Rat beta-NGF (R&D Systems) are equivalent
DMEM-F12Gibco11320-033

  1. Pagella, P., Jiménez-Rojo, L., Mitsiadis, T. A. Roles of innervation in developing and regenerating orofacial tissues. Cellular and molecular life sciences : CMLS. 71, 2241-2251 (2014).
  2. Kumar, A., Brockes, J. P. Nerve dependence in tissue, organ, and appendage regeneration. Trends in neurosciences. 35 (11), 691-699 (2012).
  3. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A., Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell stem cell. 8 (5), 552-565 (2011).
  4. Katayama, Y., Battista, M., et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 124 (2), 407-421 (2006).
  5. Fitch, S. R., Kimber, G. M., et al. Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell stem cell. 11 (4), 554-566 (2012).
  6. Knox, S. M., Lombaert, I. M. a., Reed, X., Vitale-Cross, L., Gutkind, J. S., Hoffman, M. P. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science(New York, N.Y.). 329 (5999), 1645-1647 (2010).
  7. Knox, S. M., Lombaert, I. M. A., et al. Parasympathetic stimulation improves epithelial organ regeneration. Nature communications. 4, 1494 (2013).
  8. Oakley, B., Witt, M. Building sensory receptors on the tongue. Journal of neurocytology. 33 (6), 631-646 (2004).
  9. Oakley, B., Brandemihl, A., Cooper, D., Lau, D., Lawton, A., Zhang, C. The morphogenesis of mouse vallate gustatory epithelium and taste buds requires BDNF-dependent taste neurons. Brain research. Developmental brain research. 105 (1), 85-96 (1998).
  10. Sun, H., Oakley, B. Development of anterior gustatory epithelia in the palate and tongue requires epidermal growth factor receptor. Developmental biology. 242 (1), 31-43 (2002).
  11. Mistretta, C. M., Goosens, K. a., Farinas, I., Reichardt, L. F. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. The Journal of comparative neurology. 409 (1), 13-24 (1999).
  12. Mitsiadis, T. a., Graf, D. Cell fate determination during tooth development and regeneration. Birth defects research. Part C, Embryo today reviews. 87 (3), 199-211 (2009).
  13. Mohamed, S. S., Atkinson, M. E. A histological study of the innervation of developing mouse teeth. Journal of anatomy. 136 (Pt 4), 735-749 (1983).
  14. Luukko, K. Immunohistochemical localization of nerve fibres during development of embryonic rat molar using peripherin and protein gene product 9.5 antibodies. Archives of oral biology. 42 (3), 189-195 (1997).
  15. Johnsen, D. Innervation of teeth: qualitative, quantitative, and developmental assessment. Journal of dental research. 64, 555-563 (1985).
  16. Mitsiadis, T. a., Dicou, E., Joffre, A., Magloire, H. Immunohistochemical localization of nerve growth factor (NGF) and NGF receptor (NGF-R) in the developing first molar tooth of the rat. Differentiation; research in biological diversity. 49 (1), 47-61 (1992).
  17. Mitsiadis, T. a., Luukko, K. Neurotrophins in odontogenesis. The International journal of developmental biology. 39 (1), 0214-6282 (1995).
  18. Moe, K., Sijaona, A., Shrestha, A., Kettunen, P., Taniguchi, M., Luukko, K. Semaphorin 3A controls timing and patterning of the dental pulp innervation. Differentiation; research in biological diversity. 84 (5), 371-379 (2012).
  19. Kettunen, P., Løes, S., et al. Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions and epithelial Wnt4 and Tgfbeta1 regulate semaphorin 3a expression in the dental mesenchyme. Development (Cambridge, England). 132 (2), 323-334 (2005).
  20. Tuisku, F., Hildebrand, C. Evidence for a neural influence on tooth germ generation in a polyphyodont species. Developmental biology. 165, 1-9 (1994).
  21. Zhao, H., Feng, J., et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell stem cell. 14 (2), 160-173 (2014).
  22. Kettunen, P., Kvinnsland, H., Luukko, K. Mouse rudimentary diastema tooth primordia are devoid of peripheral nerve fibers. Anatomy and embryology. 205 (3), 187-191 (2002).
  23. Lumsend, A., Buchanan, J. An experimental study of timing and topography of early tooth development in the mouse embryo. Archives of oral biology. , 301-311 (1986).
  24. Kollar, E., Lumsend, A. Tooth morphogenesis: the role of the innervation during induction and pattern formation. Journal de Biologia Buccale. 7 (1), 49-60 (1979).
  25. Luukko, K., Kettunen, P. Coordination of tooth morphogenesis and neuronal development through tissue interactions: lessons from mouse models. Experimental cell research. 325 (2), 72-77 (2014).
  26. Lillesaar, C., Eriksson, C., Johansson, C. S., Fried, K., Hildebrand, C. Tooth pulp tissue promotes neurite outgrowth from rat trigeminal ganglia in vitro. Journal of neurocytology. 28 (8), 663-670 (1999).
  27. Lumsend, A., Davies, A. M. Chemotropic effect of specific target epithelium in the developing mammalian nervous system. Nature. 323 (9), 538-539 (1986).
  28. Lillesaar, C., Fried, K. Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage. Neuroscience. 125 (1), 149-161 (2004).
  29. Lillesaar, C., Eriksson, C., Fried, K. Rat tooth pulp cells elicit neurite growth from trigeminal neurones and express mRNAs for neurotrophic factors in vitro. Neuroscience letters. 308 (3), 161-164 (2001).
  30. Petrinovic, M. M., Duncan, C. S., et al. Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development(Cambridge, England). 137 (15), 2539-2550 (2010).
  31. Otsu, K., Fujiwara, N., Harada, H. Odontogenesis. Methods in Molecular Biology. 887, (2012).
  32. Mitsiadis, T. a., Drouin, J. Deletion of the Pitx1 genomic locus affects mandibular tooth morphogenesis and expression of the Barx1 and Tbx1 genes. Developmental biology. 313 (2), 887-896 (2008).
  33. Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W., Jeon, N. L. Microfluidic culture platform for neuroscience research. Nature protocols. 1 (4), 2128-2136 (2006).
  34. Hosmane, S., Tegenge, M. A., et al. Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β mediates microglial phagocytosis of degenerating axons. The Journal of neuroscience the official journal of the Society for Neuroscience. 32 (22), 7745-7757 (2012).
  35. Delamarche, E., Tonna, N., Lovchik, R. D., Bianco, F., Matteoli, M. Pharmacology on microfluidics: multimodal analysis for studying celll-cell interaction. Current opinion in pharmacology. 13 (5), 821-828 (2013).
  36. Neto, E., Alves, C. J., et al. Sensory neurons and osteoblasts: close partners in a microfluidic environment. Integrative Biology. , (2014).
  37. Pagella, P., Neto, E., Jiménez-Rojo, L., Lamghari, M., Mitsiadis, T. A. Microfluidics co-culture systems for studying tooth innervation. Frontiers in physiology. 5 (August), (2014).
  38. Connor, R., Tessier-Lavigne, M. Identification of maxillary factor, a maxillary process-derived chemoattractant for developing trigeminal sensory axons. Neuron. 24, 165-178 (1999).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved