JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The goal of this paper is to provide a comprehensive and detailed protocol on how to generate genetically modified human organotypic skin from epidermal keratinocytes and devitalized human dermis.

Abstract

Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

Introduction

The human epidermis is a stratified epithelium that connects to the underlying dermis through an extracellular matrix known as the basement membrane zone.The epidermis not only serves as an impermeable barrier to prevent the loss of moisture but also as a first line of defense to protect the body from foreign and toxic substances1. The basal layer, which is the deepest layer of the epidermis, contains the epidermal stem and progenitor cells that give rise to the differentiated progeny that form the rest of the epidermis2. As epidermal progenitor cells differentiate they migrate upwards to form the first layer of differentiated cells known as the spinous layer3. In the spinous layer, cells turn on the expression of keratins 1 and 10, which then provide the strength to withstand physical stress for the differentiated layers of the epidermis. As the spinous layer cells further differentiate, they move upwards in the epidermis to form the granular layer which is characterized by the formation of keratohyalin and lamellar granules as well as structural proteins that are assembled below the plasma membrane. As the cells proceed in the differentiation process, the proteins beneath the plasma membrane are cross linked to each other while the lamellar granules are extruded from the cells to form a lipid rich barrier called the stratum corneum4.

Diseases that involve alterations in epidermal growth and differentiation impact ~20% of the population5. Thus, understanding the mechanisms of this process is of great importance. Since manifestation of many of these diseases is contingent upon cell-cell or cell-matrix contact, organotypic cultures where the human epidermis is reconstituted in a 3D environment have been created6-10. These methods typically involve the use of primary or transformed keratinocytes seeded on extracellular matrix such as devitalized human dermis, Matrigel, or collagen.

To understand gene regulatory mechanisms that are important in epidermal growth and differentiation, keratinocytes can be genetically manipulated through retroviral vectors to knockdown or overexpress genes in 2D culture and then reconstituted in 3D. These methods have been used extensively to characterize genes involved in epidermal stem and progenitor cell self-renewal and differentiation as well as progression to neoplasia11-21. Here, an in-depth protocol on how to alter gene expression in epidermal organotypic cultures through the use of retroviruses is provided.

Access restricted. Please log in or start a trial to view this content.

Protocol

The human skin protocol was performed in accordance with the guidelines of the University of California, San Diego’s Research Ethics Committee. Human skin can be obtained from discarded surgical samples or bought from skin banks (skin bank is listed in the Material/Equipment Table). The location where the skin is derived from or age of the donor is not critical to the experiment as long as the basement membrane zone proteins (collagen/laminin) in the dermis are not degraded.

1. Preparation of Devitalized Human Dermis

  1. Upon receiving human skin, place the tissue in the tissue culture hood to thaw (~3-5 min). Depending on the size of the skin, place thawed tissue in a sterile disposable 50 ml conical tube or 125 ml bottle. The typical size of skin from the skin bank is 0.75 square feet.
  2. Fill the container 75% full with 4x penicillin and streptomycin (pen/strep) in 1x PBS. Shake vigorously for 5 min and dispose of the liquid. Repeat this step 3 more times.
  3. After the last wash, transfer the tissue to a new tube/bottle and add fresh 4x pen/strep/PBS to fill 75% of the container. Incubate this mixture in a tissue culture incubator at 37 °C for 2 weeks to allow the separation of the dermis from the epidermis.
  4. Under sterile conditions, use forceps to peel away the epidermis from the dermis. The dermis is completely white while the epidermis will have coloring depending on the race of the donor (Figure 1A). Discard the epidermis according to the institution’s protocol for dealing with human tissue.
  5. Place the dermis in a tube or bottle and wash it in 4x pen/strep diluted in 1x PBS with vigorous shaking (5 min washes for 4 times). After the last wash, transfer the dermis to a new tube/bottle in 4x pen/strep diluted in 1x PBS and store at 4 °C until ready to use. Dermis can be stored at 4 °C for up to a year.

2. Genetically Modifying Primary Human Keratinocytes

NOTE: Use amphotropic phoenix cells grown in complete DMEM media [DMEM +10% fetal bovine serum (FBS)+pen/strep] to produce viruses to infect primary human keratinocytes. Viral packaging genes that encode proteins such as gag-pol and envelope are stably integrated into the phoenix cell genome which allows for virus production when transfected with a retroviral vector. Phoenix cells can be transfected with high efficiency allowing for high viral titer production. Virus produced from this packaging line can also infect a large variety of mammalian cells including human.

  1. Day 1: The day before transfection, seed phoenix cells in a 6-well plate at a density of 800,000 cells per well in complete DMEM media.
  2. Day 2: The day of transfection, use 3 µg of retroviral vectors per well. Aliquot 3 µg of retroviral vector into a 1.5 ml tube. Use a mix of 100 µl DMEM plus 6 µl of transfection reagent for every 3 µg of vector. Mix 6 µl of transfection reagent with 100 µl DMEM in a 1.5 ml tube. (The retroviral vectors that are used are listed in the equipment/materials table).
    1. Incubate for 5 min and add the 106 µl mixture into the pre-aliquoted tube containing the 3 µg of retroviral vector. Mix and incubate at RT for 30 min. Add this entire mixture dropwise to each well of the phoenix cells.
  3. Day 3: The day after transfection, remove the media from the phoenix cells and add 2 ml of fresh complete DMEM media. On the same day, seed primary human keratinocytes into 6-well plates at a density of 75,000 cells per well. Maintain the keratinocytes in a keratinocyte serum free medium (KCSFM) with antibiotics (pen/strep).
    NOTE: Primary human keratinocytes were purchased. Cells can be purchased from a variety of vendors (listed in the Material/Equipment table).
  4. Day 4: Harvest the media from the transfected phoenix cells, which now contains viral particles. Pass the media through a 0.45 µm filter using a syringe (to remove any contaminating phoenix cells) and place 2 ml onto the keratinocytes (plated at 75,000 cells/well the previous day: see step 2.3). Add hexadimethrine bromide (5 µg/ml) to the media to help mediate the infection process. Viral titers are ~1 x 107 TU/ml.
    1. Spin the 6-well plates in a centrifuge at 200 x g for 1 hr at RT. After the spin, remove the media containing virus and wash the cells once with 1x PBS before adding KCSFM.
  5. Day 5: Infect the same batch of keratinocytes again as in step 2.4.
    NOTE: Select the keratinocytes using a drug if there is a selectable marker on the retroviral vector and expand for use in downstream analysis or applications such as organotypic cultures.

3. Setting Up Organotypic Skin Cultures

  1. Build the organotypic cassette from common materials found in the laboratory or the cassettes can be custom made through a metal fabrication shop (Figure 2A-F). To make these cassettes from a 3.5 cm tissue culture plate, use a cautery to remove a 1.0 cm x 1.0 cm square from the center of the lid of a 3.5 cm dish (Figure 2A-B). Do this under sterile conditions.
    1. Attach square pegs to the bottom of the cassette (lid of 3.5 cm dish) using clear nail polish (Figure 2C). Allow 5 min for the nail polish to dry and flip the cassette over so that it is resting on the square pegs (Figure 2D). Place the cassette into a 6 cm dish.
      NOTE: Square pegs can be purchased from a variety of arts and crafts stores.
  2. Prepare keratinocyte growth medium (KGM) comprised of 66% DMEM, 22% Ham’s F12, 100 units/ml penicillin, 100 µg/ml streptomycin, 10% FBS, 2.67 µg/ml adenine, 40 ng/ml hydrocortisone, 10 ng/ml cholera toxin, 4.94 µg/ml insulin, 5 µg/ml transferrin, 1.36 ng/ml Triiodo-L-thyronine, 10 ng/ml EGF, and 10 µg/ml ciprofloxacin hydrochloride. Filter the media through a 0.22 µm filter and store at 4 °C until ready to use.
  3. Take the dermis out of the 4x pen/strep + PBS solution and wash 2 times in KGM and then incubate in KGM at 37 °C for two days prior to use.
  4. Cut the dermis using a scalpel to 1.5 cm x 1.5 cm sized pieces and then place onto the organotypic cassette. Place the dermis with the top of the dermis facing up. The top of the dermis will be the side that comes into contact with the keratinocytes (Figure 1B).
  5. Place the pre-cut dermis onto the square hole of the organotypic cassette with the top side of the dermis facing up (Figure 3A).
  6. Flip the entire organotypic cassette containing the dermis over using forceps (Figure 3B). Thaw the extracellular matrix solution on ice. Use a needle and syringe to draw out 100 µl of extracellular matrix solution per cassette. Add 5 drops to the bottom of the dermis (glossy side) and shake slightly to ensure even distribution throughout the dermis (Figure 3B).
  7. Allow 5 min for the commercial extra cellular matrix solution to completely solidify (Figure 3C). After solidification, use forceps to flip the cassette back over. Add 4 ml of KGM to the 6 cm dish.
  8. Place 0.5-1 million genetically modified keratinocytes onto the organotypic cassettes containing the dermis (Figure 3D).
    1. Trypsinize keratinocytes by placing 4 ml of 0.05% Trypsin onto 10 cm plates for 5 min and quench with 4 ml of complete DMEM media.
    2. Count the keratinocytes using a hemocytometer and then spin down at 200 x g for 5 min. Resuspend 0.5-1 million cells (depending on the number of cells available) in 90 µl of KGM and place all the cells onto the dermis.
      NOTE: It is important to place the same number of cells on dermis within the same experiment to ensure that any differences seen in thickness of the regenerated epidermis is not due to differences in starting cell number. Placing less than 0.5 million cells on dermis can lead to poor stratification and differentiation.
  9. Change KGM media on the organotypic cultures every other day. Harvest tissue 1-14 days after placement of keratinocytes on the dermis. Full stratification and differentiation of the epidermis usually occurs after day 5.

Access restricted. Please log in or start a trial to view this content.

Results

The first step in generating organotypic human skin is to remove the epidermis from the dermis. The two week incubation of the skin at 37 °C in 4x pen/strep/PBS should allow the separation of the dermis from the epidermis (Figure 1A). If separating the epidermis and dermis is difficult then place the tissue at 37 °C in 4x pen/strep/PBS for another week and then try peeling again using forceps.

One of the keys to regenerating human epidermis on devitalized d...

Access restricted. Please log in or start a trial to view this content.

Discussion

Genetic manipulation in human skin organotypic cultures offer many advantages to commonly studied 2D cultured cells as well as mouse models. 2D cultures lack the three dimensional cell-cell and cell-extracellular matrix interactions found in intact tissues and organs. Recent studies have also found tremendous differences between 2D and 3D cultured skin cancer cells with the 3D cultured cells showing much more gene expression similarities to primary human skin tumors16. Human organotypic skin cultures also have...

Access restricted. Please log in or start a trial to view this content.

Disclosures

We have nothing to disclose.

Acknowledgements

This work was supportedby the American Cancer Society Research Scholars Grant(RSG-12-148-01-DDC) and the CIRM Basic Biology Award (RB4-05779).

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Human skinNew York Firefighters Skin Bankhttp://www.cornellsurgery.org/pro/services/burn-surgery/skin-bank.html
PEN/STREPGIBCO15140-122
amphotropic phoenix cell linesATCCCRL-3213
FUGENE 6 transfection reagentPromegaE2691
Keratinocyte Media (KCSFM)Life Technologies17005042
DMEMGIBCO11995
Ham's F12Cambrex12-615F
FBSGIBCO10437-028
AdenineSigmaA-9795
Cholera ToxinSigma C-8052
HydrocortisoneCalbiochem3896
InsulinSigmaI-1882
EGFInvitrogen13247-051
Transferrin SigmaT-0665
Ciprofloxacin HydrochlorideSerologicals89-001-1
cauteryBovie Medical CorporationAA01
MatrigelCorning354234
Keratin 1 antibodyBiolegendPRB-149P
square pegsArts and crafts stores
human neonatal keratinocytesATCCPCS-200-010
human neonatal keratinocytesCell Applications102K-05n
MSCV retroviral vectorClontech634401
LZRS retroviral vectorAddgene
pSuper.Retro.Puro Retroviral vectorOligoengineVEC-PRT-0002 
hexadimethrine bromide SigmaH9268-5G

References

  1. Tadeu, A. M., Horsley, V. Epithelial stem cells in adult skin. Current topics in developmental biology. 107, 107-131 (2014).
  2. Sen, G. L. Remembering one's identity: the epigenetic basis of stem cell fate decisions. FASEB J. 25, 2123-2128 (2011).
  3. Segre, J. A. Epidermal barrier formation and recovery in skin disorders. J Clin Invest. 116, 1150-1158 (2006).
  4. Eckert, R. L., Sturniolo, M. T., Broome, A. M., Ruse, M., Rorke, E. A. Transglutaminase function in epidermis. J Invest Dermatol. 124, 481-492 (2005).
  5. Lopez-Pajares, V., Yan, K., Zarnegar, B. J., Jameson, K. L., Khavari, P. A. Genetic pathways in disorders of epidermal differentiation. Trends Genet. 29, 31-40 (2013).
  6. Fuchs, E. Epidermal differentiation: the bare essentials. J Cell Biol. 111, 2807-2814 (1990).
  7. Green, H., Kehinde, O., Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 76, 5665-5668 (1979).
  8. Khavari, P. A. Modelling cancer in human skin tissue. Nat Rev Cancer. 6, 270-280 (2006).
  9. Parenteau, N. L., Bilbo, P., Nolte, C. J., Mason, V. S., Rosenberg, M. The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function. Cytotechnology. 9, 163-171 (1992).
  10. Oh, J. W., Hsi, T. C., Guerrero-Juarez, C. F., Ramos, R., Plikus, M. V. Organotypic skin culture. J Invest Dermatol. 133, e14(2013).
  11. Sen, G. L., et al. ZNF750 Is a p63 Target Gene that Induces KLF4 to Drive Terminal Epidermal Differentiation. Dev Cell. 22, 669-677 (2012).
  12. Sen, G. L., Webster, D. E., Barragan, D. I., Chang, H. Y., Khavari, P. A. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 22, 1865-1870 (2008).
  13. Mistry, D. S., Chen, Y., Wang, Y., Zhang, K., Sen, G. L. SNAI2 controls the undifferentiated state of human epidermal progenitor cells. Stem Cells. 32, 3209-3218 (2014).
  14. Truong, A. B., Kretz, M., Ridky, T. W., Kimmel, R., Khavari, P. A. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 20, 3185-3197 (2006).
  15. Kretz, M., et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 493, 231-235 (2013).
  16. Ridky, T. W., Chow, J. M., Wong, D. J., Khavari, P. A. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat Med. 16, 1450-1455 (2010).
  17. Mistry, D. S., Chen, Y., Sen, G. L. Progenitor function in self-renewing human epidermis is maintained by the exosome. Cell Stem Cell. 11, 127-135 (2012).
  18. Kretz, M., et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 26, 338-343 (2012).
  19. Mulder, K. W., et al. Diverse epigenetic strategies interact to control epidermal differentiation. Nat Cell Biol. 14, 753-763 (2012).
  20. Boxer, L. D., Barajas, B., Tao, S., Zhang, J., Khavari, P. A. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev. 28, 2013-2026 (2014).
  21. Jameson, K. L., et al. IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med. 19, 626-630 (2013).
  22. Mistry, D. S., Chen, Y., Wang, Y., Sen, G. L. Transcriptional profiling of SNAI2 regulated genes in primary human keratinocytes. Genomics data. 4, 43-46 (2015).
  23. Mali, P., et al. RNA-guided human genome engineering via Cas9. Science. 339, 823-826 (2013).
  24. Doebis, C., et al. Efficient in vitro transduction of epithelial cells and keratinocytes with improved adenoviral gene transfer for the application in skin tissue engineering. Transpl immunol. 9, 323-329 (2002).
  25. Melo, S. P., et al. Somatic correction of junctional epidermolysis bullosa by a highly recombinogenic AAV variant. Mol Ther. 22, 725-733 (2014).
  26. Nanba, D., Matsushita, N., Toki, F., Higashiyama, S. Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector. Stem cell res ther. 4, 127(2013).
  27. Sen, G. L., Reuter, J. A., Webster, D. E., Zhu, L., Khavari, P. A. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature. 463, 563-567 (2010).
  28. Shamir, E. R., Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 15, 647-664 (2014).
  29. Krejci, N. C., Cuono, C. B., Langdon, R. C., McGuire, J. In vitro reconstitution of skin: fibroblasts facilitate keratinocyte growth and differentiation on acellular reticular dermis. J Invest Dermatol. 97, 843-848 (1991).
  30. Mathes, S. H., Ruffner, H., Graf-Hausner, U. The use of skin models in drug development. Adv Drug Deliv Rev. 69-70, 81-102 (2014).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Organotypic Skin CulturesGenetically Modified KeratinocytesDevitalized Human DermisEpidermal DifferentiationStratificationRetrovirusesGene OverexpressionGene KnockdownSkin HomeostasisGene Expression ProfilingImmunostainingChromatin ImmunoprecipitationHigh throughput Sequencing

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved