A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of this paper is to provide a comprehensive and detailed protocol on how to generate genetically modified human organotypic skin from epidermal keratinocytes and devitalized human dermis.
Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.
The human epidermis is a stratified epithelium that connects to the underlying dermis through an extracellular matrix known as the basement membrane zone.The epidermis not only serves as an impermeable barrier to prevent the loss of moisture but also as a first line of defense to protect the body from foreign and toxic substances1. The basal layer, which is the deepest layer of the epidermis, contains the epidermal stem and progenitor cells that give rise to the differentiated progeny that form the rest of the epidermis2. As epidermal progenitor cells differentiate they migrate upwards to form the first layer of differentiated cells known as the spinous layer3. In the spinous layer, cells turn on the expression of keratins 1 and 10, which then provide the strength to withstand physical stress for the differentiated layers of the epidermis. As the spinous layer cells further differentiate, they move upwards in the epidermis to form the granular layer which is characterized by the formation of keratohyalin and lamellar granules as well as structural proteins that are assembled below the plasma membrane. As the cells proceed in the differentiation process, the proteins beneath the plasma membrane are cross linked to each other while the lamellar granules are extruded from the cells to form a lipid rich barrier called the stratum corneum4.
Diseases that involve alterations in epidermal growth and differentiation impact ~20% of the population5. Thus, understanding the mechanisms of this process is of great importance. Since manifestation of many of these diseases is contingent upon cell-cell or cell-matrix contact, organotypic cultures where the human epidermis is reconstituted in a 3D environment have been created6-10. These methods typically involve the use of primary or transformed keratinocytes seeded on extracellular matrix such as devitalized human dermis, Matrigel, or collagen.
To understand gene regulatory mechanisms that are important in epidermal growth and differentiation, keratinocytes can be genetically manipulated through retroviral vectors to knockdown or overexpress genes in 2D culture and then reconstituted in 3D. These methods have been used extensively to characterize genes involved in epidermal stem and progenitor cell self-renewal and differentiation as well as progression to neoplasia11-21. Here, an in-depth protocol on how to alter gene expression in epidermal organotypic cultures through the use of retroviruses is provided.
Access restricted. Please log in or start a trial to view this content.
The human skin protocol was performed in accordance with the guidelines of the University of California, San Diego’s Research Ethics Committee. Human skin can be obtained from discarded surgical samples or bought from skin banks (skin bank is listed in the Material/Equipment Table). The location where the skin is derived from or age of the donor is not critical to the experiment as long as the basement membrane zone proteins (collagen/laminin) in the dermis are not degraded.
1. Preparation of Devitalized Human Dermis
2. Genetically Modifying Primary Human Keratinocytes
NOTE: Use amphotropic phoenix cells grown in complete DMEM media [DMEM +10% fetal bovine serum (FBS)+pen/strep] to produce viruses to infect primary human keratinocytes. Viral packaging genes that encode proteins such as gag-pol and envelope are stably integrated into the phoenix cell genome which allows for virus production when transfected with a retroviral vector. Phoenix cells can be transfected with high efficiency allowing for high viral titer production. Virus produced from this packaging line can also infect a large variety of mammalian cells including human.
3. Setting Up Organotypic Skin Cultures
Access restricted. Please log in or start a trial to view this content.
The first step in generating organotypic human skin is to remove the epidermis from the dermis. The two week incubation of the skin at 37 °C in 4x pen/strep/PBS should allow the separation of the dermis from the epidermis (Figure 1A). If separating the epidermis and dermis is difficult then place the tissue at 37 °C in 4x pen/strep/PBS for another week and then try peeling again using forceps.
One of the keys to regenerating human epidermis on devitalized d...
Access restricted. Please log in or start a trial to view this content.
Genetic manipulation in human skin organotypic cultures offer many advantages to commonly studied 2D cultured cells as well as mouse models. 2D cultures lack the three dimensional cell-cell and cell-extracellular matrix interactions found in intact tissues and organs. Recent studies have also found tremendous differences between 2D and 3D cultured skin cancer cells with the 3D cultured cells showing much more gene expression similarities to primary human skin tumors16. Human organotypic skin cultures also have...
Access restricted. Please log in or start a trial to view this content.
We have nothing to disclose.
This work was supportedby the American Cancer Society Research Scholars Grant(RSG-12-148-01-DDC) and the CIRM Basic Biology Award (RB4-05779).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Human skin | New York Firefighters Skin Bank | http://www.cornellsurgery.org/pro/services/burn-surgery/skin-bank.html | |
PEN/STREP | GIBCO | 15140-122 | |
amphotropic phoenix cell lines | ATCC | CRL-3213 | |
FUGENE 6 transfection reagent | Promega | E2691 | |
Keratinocyte Media (KCSFM) | Life Technologies | 17005042 | |
DMEM | GIBCO | 11995 | |
Ham's F12 | Cambrex | 12-615F | |
FBS | GIBCO | 10437-028 | |
Adenine | Sigma | A-9795 | |
Cholera Toxin | Sigma | C-8052 | |
Hydrocortisone | Calbiochem | 3896 | |
Insulin | Sigma | I-1882 | |
EGF | Invitrogen | 13247-051 | |
Transferrin | Sigma | T-0665 | |
Ciprofloxacin Hydrochloride | Serologicals | 89-001-1 | |
cautery | Bovie Medical Corporation | AA01 | |
Matrigel | Corning | 354234 | |
Keratin 1 antibody | Biolegend | PRB-149P | |
square pegs | Arts and crafts stores | ||
human neonatal keratinocytes | ATCC | PCS-200-010 | |
human neonatal keratinocytes | Cell Applications | 102K-05n | |
MSCV retroviral vector | Clontech | 634401 | |
LZRS retroviral vector | Addgene | ||
pSuper.Retro.Puro Retroviral vector | Oligoengine | VEC-PRT-0002 | |
hexadimethrine bromide | Sigma | H9268-5G |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved