JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This manuscript describes the creation of defined engineered cardiac tissues using surface marker expression and cell sorting. The defined tissues can then be used in a multi-tissue bioreactor to investigate mechanisms of cardiac cell therapy in order to provide a functional, yet controlled, model system of the human heart.

Abstract

Human cardiac tissue engineering can fundamentally impact therapeutic discovery through the development of new species-specific screening systems that replicate the biofidelity of three-dimensional native human myocardium, while also enabling a controlled level of biological complexity, and allowing non-destructive longitudinal monitoring of tissue contractile function. Initially, human engineered cardiac tissues (hECT) were created using the entire cell population obtained from directed differentiation of human pluripotent stem cells, which typically yielded less than 50% cardiomyocytes. However, to create reliable predictive models of human myocardium, and to elucidate mechanisms of heterocellular interaction, it is essential to accurately control the biological composition in engineered tissues.

To address this limitation, we utilize live cell sorting for the cardiac surface marker SIRPα and the fibroblast marker CD90 to create tissues containing a 3:1 ratio of these cell types, respectively, that are then mixed together and added to a collagen-based matrix solution. Resulting hECTs are, thus, completely defined in both their cellular and extracellular matrix composition.

Here we describe the construction of defined hECTs as a model system to understand mechanisms of cell-cell interactions in cell therapies, using an example of human bone marrow-derived mesenchymal stem cells (hMSC) that are currently being used in human clinical trials. The defined tissue composition is imperative to understand how the hMSCs may be interacting with the endogenous cardiac cell types to enhance tissue function. A bioreactor system is also described that simultaneously cultures six hECTs in parallel, permitting more efficient use of the cells after sorting.

Introduction

Cardiac tissue engineering has advanced greatly in the last decade, with multiple groups publishing results of fully functional, beating tissues made from both murine cardiomyocytes1-6 and, more recently, human stem cell-derived cardiac myocytes7-12. The cardiac tissue engineering field is driven by two primary and essentially independent goals: 1) to develop exogenous grafts that can be transplanted into failing hearts to improve function4-6; and 2) to develop in vitro models for studying physiology and disease, or as screening tools for therapeutic development2,7.

Three-dimensional (3-D) cell culture is considered essential for developing next generation screening tools, as the 3-D matrix reflects a more natural cardiac microenvironment than traditional 2-D monolayer cell culture; indeed some aspects of cell biology are fundamentally different in 2-D vs. 3-D cultures13,14. Additionally, engineered cardiac tissues are constructed from completely defined components: an extracellular matrix, and a cell population. For traditional engineered human cardiac tissues, while the extracellular matrix composition (usually fibrin9 or collagen7,8,10) is strictly controlled, the input cell composition is less well defined, with the entire mixture of cells from a directed cardiac differentiation of either embryonic stem cells (ESC7,9) or induced pluripotent stem cells (iPSC10,12) being added to the tissues. Depending on the specific cell line and the efficiency of the differentiation protocol used, the resulting percentage of cardiomyocytes can range from less than 25% to over 90%, the specific cardiomyocyte phenotype (i.e., ventricular-, atrial-, or pacemaker-like) can also vary, even the non-cardiomyocyte fraction can be highly heterogeneous15,16 and alter the maturity of the differentiated cardiac myocytes17.

Recent cardiac tissue engineering work has attempted to control the input population of cells, with either a cardiac reporter human embryonic stem cell line8 or cell surface markers18 being used to isolate the cardiac myocyte component of the differentiation. While initially a tissue composed of only cardiac myocytes would seem to be the ideal, this is in fact not the case; hECTs composed solely of cardiac myocytes fail to compact into functional tissues, with some groups finding a 3:1 ratio of cardiac myocytes:fibroblasts producing the highest twitch force8. By using various cell selection methods, including surface markers for live cell sorting, it is possible to create hECTs with defined cell populations. While markers of non-cardiac stromal cells have been available for some time, such as the putative fibroblast marker CD9019,20, surface markers of cardiac myocytes have been more difficult to identify. SIRPα was among the first cardiac surface markers identified for human cardiac myocytes18 and has been shown to be highly selective for the cardiac lineage. Recently, we have found that double-sorting for SIRPα+ and CD90- cells yields nearly pure cardiomyocytes, with the CD90+ population exhibiting a fibroblast-like phenotype (Josowitz, unpublished observations). Based on these collected findings, herein we describe creating hECTs using a 3:1 combination of SIRPα+/CD90- cardiomyocytes and CD90+ fibroblasts.

The ability to engineer a completely defined human cardiac tissue is essential not only for creating robust screening tools, but also for developing model systems to investigate emerging cell- and gene-based cardiac therapies. In particular, numerous cell therapies for heart failure, utilizing cell types including mesenchymal stem cells (MSC)21, cardiac stem cells22 and bone marrow mononuclear cells23-25, have been tested in clinical trials. While many of the initial results have been promising21,23,25, the initial benefit often diminishes over time26-29. A similar trend has been reported in murine engineered cardiac tissues, which display a significant functional benefit due to MSC supplementation, but the benefit is not sustained during long-term culture1. Underlying the sub-optimal performance is our limited knowledge of the mechanisms governing cell therapies. A deeper understanding of how therapeutic cells exert their beneficial influence, as well as potential negative consequences of myocyte-nonmyocyte interactions, would enable the development of improved therapies yielding clinically significant and sustained benefits, with minimal side effects, for patients with heart failure.

Here, we describe the use of defined hECTs to interrogate mechanisms of cell-based therapy. The controlled tissue composition is essential to identify specific factors impacting cardiomyocyte performance. Directly supplementing hECTs with the therapeutic cell type of interest (e.g., MSCs), can reveal the effects on cardiac myocyte performance, as we have demonstrated in rat ECTs1.

The following multi-step protocol begins with directed cardiac stem cell differentiation, followed by fabrication of the multi-tissue bioreactor, and concluding with a description of tissue construction and functional analysis. Our experiments are performed using the NIH-approved H7 human embryonic stem cell (hESC) line. However, the following protocols have also been tested using an additional hESC line and three induced pluripotent stem cell (hiPSC) lines with similar results. We have found that efficiency in cardiomyocyte differentiation and success in hECT fabrication can be cell line dependent, particularly for hiPSC lines derived from individual patients. By following this protocol, two 6-well dishes are plated with a total of 1.68 million hESCs (140,000 cells per well), which yields approximately 2.5 million myocytes after differentiating for 20 days and sorting, enough to make six defined tissues.

Protocol

Note: Perform all cell manipulations in aseptic conditions using a HEPA-filtered class II biological safety cabinet and sterilize all solutions by filtering them through a 0.2 µm filter. Perform tissue construction and function testing in either the same aseptic conditions or a laminar flow hood.

1. Seeding of H7 hESCs in Preparation for Cardiac Differentiation

  1. (Day 1) Preparing the Basement Membrane Matrix
    1. Thaw 150 µl aliquot of hESC qualified basement membrane matrix on ice overnight at 4 °C.
  2. (Day 0-4) Plating of hESCs on Coated Plates
    1. Dilute the thawed matrix into 12 ml of ice-cold DMEM/F12 and mix well.
    2. Transfer 1 ml of the DMEM/F12-matrix solution into each well of a 6-well tissue culture treated dish. Each aliquot of matrix can coat two 6-well plates.
    3. Incubate the coated plates at room temperature for at least 1 hr.
      Note: In our experience, coated dishes sealed with paraffin can be stored in matrix solution at 4 °C for up to 10 days before use.
    4. At approximately 75% confluence, dissociate the H7 hESCs from the 10 cm dish using 6 ml of the non-enzymatic dissociation reagent. After 5 min, gently scrape the cells from the culture surface using a disposable cell scraper and transfer the cell suspension to a sterile 15 ml centrifuge tube.
    5. Remove 0.5 ml of the dissociation solution with the cells from the 15 ml tube and transfer to a new sterile 15 ml tube (leaving 5.5 ml of the dissociation reagent to further dissociate the hESCs) for stem cell line propagation.
    6. Pellet the 0.5 ml of cells at 300 x g for 5 min at 20 °C. Remove the supernatant and gently resuspend in 8 ml of pluripotent stem cell media containing 1% penicillin-streptomycin then transfer to a new, coated, 10 cm tissue culture dish and maintain 37 °C and 5% CO2 to maintain the stem cell line.
      Note: Keep pluripotent stem cell media on ice during media changes.
    7. Meanwhile, add 5.5 µl of 10 mM ROCK inhibitor Y-27632 to the remaining 5.5 ml of dissociation solution and continue to incubate at room temperature for another 5-10 min. Gently mix the cells with a 5 ml serological pipet. Continue to incubate until a single cell suspension is achieved, then pellet the cells at 300 x g for 5 min at room temperature.
    8. Resuspend the cells in 5 ml of pluripotent stem cell media and perform a cell count using a hemocytometer.
    9. Seed each well of the 6-well dish at a density of 140,000 cells per well. Seed two 6-well plates to create a total of six defined tissues. Dispose of any remaining cells after plating.
    10. Fill the well to 1 ml with pluripotent stem cell media and incubate at 37 °C, 5% CO2. Twenty-four hours later, remove the media and add 2 ml of fresh pluripotent stem cell media to each well (Figure 1A).
    11. Check the confluence of the plates each day and begin the differentiation once the cells reach approximately 75% confluence (Figure 1B-D).

2. (Day 4-24) Differentiation of Human Embryonic Stem Cells to Cardiomyocytes30,31

  1. (Day 4-7, Differentiation Day 0-3) Mesoderm Induction
    1. Prepare RPMI differentiation media I (Table 1) by combining 500 ml RPMI 1640 with 10 ml B27 supplement (without insulin) and 5 ml of penicillin-streptomycin stock solution (10,000 IU/ml penicillin; 10,000 µg/ml streptomycin). Aliquot, on ice, into 50 ml tubes and store at 4 °C.
    2. (Day 4, Differentiation Day 0) Prepare mesoderm induction media by adding 2.4 µl of the small molecule GSK3 inhibitor CHIR99021 (10 mM stock, 6 µM final concentration) to 12 ml of RPMI differentiation media I. Remove pluripotent stem cell media from each well and replace with 2 ml of the mesoderm induction media per well. Return the plate to the incubator.
      Note: Significant cell death typically occurs with the addition of CHIR99021 (Figure 1E). The monolayer will recover, but it is important to rinse the dead cells away with the DMEM/F12 rinse.
    3. (Day 5, Differentiation Day 1) Prepare fresh mesoderm induction media as described above. Remove the old media from each well and rinse once with 1 ml of DMEM/F12 per well. Add 2 ml of fresh mesoderm induction media to each well.
      Note: Rinsing each day from Day 0-10 greatly increases yield and purity of the cardiac myocytes.
    4. (Day 6, Differentiation Day 2) Remove the cardiac induction media and rinse once with 1 ml DMEM/F12 per well. Replace the rinse with 2 ml RPMI differentiation media I (no small molecules added but still with the B27 (without insulin) supplement) and return to the incubator.
  2. (Day 7-13, Differentiation Day 3-10) Cardiac Mesoderm Induction
    1. (Day 7, Differentiation Day 3) Prepare cardiac mesoderm induction media by adding 6 µl of the small molecule Wnt inhibitor IWR-1 (10 mM stock, 5 µM final) to 12 ml of RPMI differentiation media I.
    2. Remove the media from each well, rinse once with 1 ml DMEM/F12 per well and replace with 2 ml of cardiac mesoderm induction media per well.
    3. (Day 8, Differentiation Day 4) Prepare an additional 12 ml of cardiac mesoderm induction media as described above. Remove the media added the day prior, rinse once with 1 ml DMEM/F12 per well and replace with 2 ml of fresh cardiac mesoderm differentiation media per well and return to the incubator.
    4. (Day 9-10, Differentiation Day 5-6) On both days, remove the cardiac mesoderm induction media and rinse each well with 1 ml of DMEM/F12.
    5. Add 2 ml of fresh RPMI differentiation media I (no small molecules added but still with the B27 (without insulin) supplement) to each well and return the plate to the incubator.
  3. (Day 11-24, Differentiation Day 7-20) hES-derived Cardiac Myocyte Organization/Maturation
    1. Prepare the RPMI differentiation media II (Table 1) by combining 500 ml RPMI 1640 with 10 ml B27 supplement (with insulin) and 5 ml of penicillin-streptomycin stock solution. Aliquot, on ice, into 50 ml tubes and store at 4 °C.
    2. (Day 11, Differentiation Day 7) Remove RPMI differentiation media (without insulin) from each well and rinse with 1 ml DMEM/F12. Replace with 2 ml of the new RPMI differentiation media II (with insulin) to each well and return to the incubator.
      Note: Spontaneous beating should first be observed between days 7 and 10. If beating is not observed during this time, it typically indicates poor differentiation efficiency. The protocol can be continued until day 15 in an effort to observe beating, but if no beating is observed by day 15 it is best to start a new differentiation.
    3. (Day 12-24, Differentiation Day 8-20) Every day, remove the old differentiation media and replace with 2 ml of fresh RPMI differentiation media II per well to permit cell maturation and organization of the beating monolayer (Figure 1F, Video Figure 1).
      Note: Depending on the residual cell death, it may be necessary to rinse with 1 ml of DMEM/F12 through differentiation day 10.

3. (Day 24, Differentiation Day 20) Isolation of Cardiac Myocytes and Fibroblast-like Cells

  1. Dissociate Cells from the Monolayer
    1. Remove differentiation media and rinse once with 1 ml PBS.
    2. Dissociate the monolayers with 1 ml of the enzymatic dissociation solution (0.04% Trypsin/0.03% EDTA) to each well.
    3. Move plate into incubator for 10 min. Meanwhile, add 12 µl of ROCK inhibitor to 6 ml of trypsin neutralization solution.
    4. Gently add 1 ml of the trypsin neutralization solution containing the ROCK inhibitor to each well of the plate to neutralize the trypsin solution.
    5. Using a sterile transfer pipet, gently mix each well to break apart the cell clusters.
    6. Transfer all 12 ml from the 6-well plate to a 15 ml centrifuge tube.
      Note: Since two 6-well plates are used in this protocol, two 15-ml tubes will be needed.
    7. Transfer 3 ml of PBS to one well of the plate, and then sequentially transfer the same 3 ml to each subsequent well to collect any residual cells on the dish. Transfer the remaining 3 ml from the final well into the same 15 ml centrifuge tube containing the cells.
    8. Pellet at 300 x g for 5 min at 4 °C.
  2. Prepare Cells for Live Cell Sorting by FACS
    1. Prepare the staining buffer by adding 5 ml of Fetal Bovine Serum to 45 ml of PBS on ice with 50 µl of ROCK inhibitor.
    2. Remove the supernatant from the cell pellet (in 3.1.8) and resuspend in 1.2 ml of staining buffer.
    3. Transfer 200 µl of the cell suspension to a new, pre-chilled, 50 ml centrifuge tube on ice. This will be the negative staining control.
    4. Transfer the remaining 1 ml of cell suspension to a new, pre-chilled, 50 ml centrifuge tube on ice and add 2 µl SIRPα-PE/Cy7 (1:500 dilution) and 4 µl of CD90-FITC (1:250 dilution). Gently mix the cell suspension with a transfer pipet and return to the ice.
    5. Incubate both the negative control and sample, on a rocker shaker, on ice, at 4 °C for 1 hr.
    6. Prepare sample collection tubes by adding 3 ml of RPMI media (with insulin) to two 15 ml centrifuge tubes. Add 3 µl of ROCK inhibitor to each tube and store on ice.
    7. Pellet the stained cells at 300 x g for 5 min at 4 °C and rinse twice with at least 10 ml of ice-cold PBS per rinse.
    8. Add 1 µl of DAPI (1 µg/ml) to 5 ml of staining buffer. Gently resuspend the sample pellet with 1-3 ml of the DAPI-containing staining buffer using a transfer pipet.
    9. Add 500 µl of staining buffer (with no DAPI added) to the negative control.
    10. Gently filter both the negative control and sample through a 40 µm cell strainer to remove clumps of cells and transfer to polystyrene FACS tubes on ice. Immediately bring samples to the cell sorter.
    11. Similar to established live cell sorting methods18, use the negative control to set the gates, select for live cells (DAPI negative) and collect both the FITC+ (i.e., CD90+ fibroblasts) and PE/Cy7+ (i.e., SIRPα+ cardiomyocytes) populations independently at 20 psi (Figure 2).
      Note: After setting the gates, the negative control can be fixed in 4% PFA to determine differentiation efficiency by staining for cardiac troponin-T.
      Note: Some researchers prefer to use an isotype control rather than unstained control to set the gates in order to compensate for non-specific antibody binding. A so-called fluorescence minus one (FMO) control is another possibility. Due to the clear bimodal distribution of the FITC, DAPI and PE-Cy7 signals, we gated from the positive population, conservatively aiming far into the positive gate, which possibly excludes some true positives but helps to minimize any false positives.
  3. Cell Reaggregation in Preparation for Tissue Engineering
    1. After the cell sort, pellet both collection tubes and resuspend in 1 ml of DMEM containing 10% Neonatal Bovine Serum, 1% penicillin-streptomycin and 0.2% Amphotericin B (“NBS media”).
    2. Recombine the SIRPα+ and CD90+ cells in a 3:1 ratio and plate the combined cells in a non-tissue culture treated petri dish at a density of 2 million cells per 60 cm2 (10 cm dish). Add 10 ml of NBS media and 10 µl of ROCK inhibitor Y-27632.
    3. Place cell suspension in the tissue culture incubator for 48 hours to allow cell reaggregation into small clusters.

4. Human Cardiac Tissue Engineering

  1. Fabricate the Multi-tissue Bioreactor
    Note: To supplement the illustrations in Figure 3A, CAD files with detailed bioreactor design schematics are available upon request from the authors.
    1. Machine the PDMS master mold by drilling six evenly spaced holes of 0.5 mm diameter into a 9 x 33 x 3.25 mm cuboid of polytetrafluoroethylene.
    2. Using an endmill, machine a frame from polysulfone measuring 25 x 35 x 11 mm3. The purpose of the frame is to hold the PDMS posts (constructed from the cast made above) in alignment with the wells in the baseplate.
    3. Using a 1-mm endmill, machine 6 wells (6 x 1 x 1 mm3), 4 mm apart into a 20 x 40 x 5 mm3 piece of black polytetrafluoroethylene to form the baseplate.
    4. Mix the elastomeric base and curing agent for polydimethylsiloxane (PDMS) in a 10:1 w/w ratio and add to the custom polytetrafluoroethylene mold (step 4.1.1) to create two rows of six force-sensing posts, and incubate overnight and under vacuum at 80 °C. After curing, gently remove the PDMS from the master mold and carefully mark the tops of each post with a black permanent marker for enhanced contrast and automated real-time post deflection tracking.
      Note: Polytetrafluorethylene is fairly soft and can be damaged easily. Use care when cleaning the master mold prior to PDMS casting to ensure longevity of the system and consistent PDMS post geometry. A 0.5 mm wire can be used to clean the holes for the posts after each use, but take care to not scrape the inside of the holes.
      Note: An alternative is to degas the PDMS under vacuum for several hours at room temperature, then let the mixture cure at ambient pressure. This may lead to fewer residual gas bubbles forming in the PDMS during the curing process.
    5. Sterilize all Components in a Steam Autoclave.
      Note: The PDMS master mold (step 4.1.1) and polysulfone frame (step 4.1.2) are both reusable. The PDMS posts created from the cast (step 4.1.4) is also reusable but only for approximately 10 uses. However, more PDMS posts can be created as needed using the master mold.
  2. Collect Reaggregated Cardiac Cells
    1. Remove the reaggregated cells from the incubator and transfer all 10 ml of the reaggregation media to a 50 ml centrifuge tube.
    2. Rinse the plate with 3 ml of PBS and transfer the rinse to the same 50 ml centrifuge tube containing the reaggregation media.
    3. Add 3 ml of 0.04% Trypsin/0.03% EDTA to the 10 cm dish and return to the incubator for 5 min.
    4. After 5 min, examine the plate with an inverted compound microscope at 10X magnification to ensure complete cell dissociation from the dish. If some residual clusters are still attached, gently agitate the plate to detach the clumps. If the clusters remain attached, return to the incubator for another 2-3 min. Do not incubate longer than ten minutes or significant cell death may occur.
    5. Once all cells are detached, add 3 ml of trypsin neutralization solution. Gently mix the neutralization solution with the trypsin-cell solution and transfer to the 50 ml centrifuge tube containing the reaggregation media and rinse once with PBS.
    6. Rinse the entire dish with 5 ml of PBS and transfer to the same 50 ml tube containing the cells.
    7. Pellet the cells at 300 x g for 5 min at room temperature.
    8. Remove the supernatant and resuspend the pellet in 1 ml of NBS media, then transfer to a 1.5 ml microcentrifuge tube.
    9. Pellet at 300 x g for 5 min at room temperature and remove the supernatant. The cardiac cells (CD90+ stromal cells and SIRPα+ myocytes) are now ready for tissue construction.
  3. (Optional) Collect Supplemental Cells of Interest
    Note: In addition to the defined tissues containing only SIRPα+ cardiomyocytes and CD90+ fibroblast-like cells, it is possible to add additional cells of interest to interrogate their effect on tissue function. For example rat MSCs have been shown to enhance the function of rat engineered cardiac tissues1. The following optional step describes the collection of supplemental cells for the defined system.
    1. Collect the supplemental cell type of interest (e.g., mesenchymal stem cells) using 0.25% trypsin/0.1% EDTA.
    2. Pellet the cells at 300 x g for 5 min at room temperature then resuspend in 5 ml of appropriate cell culture media for the cell type of interest. For instance, for MSCs, use DMEM supplemented with 20% fetal bovine serum, 1% penicillin-streptomycin and 0.2% amphotericin-B to culture the cells.
    3. Perform a cell count using a hemocytometer, then pellet the cells again at 300 x g for 5 min at room temperature.
    4. Remove the supernatant, resuspend in 1 ml of cell culture media and transfer to a 1.5 ml microcentrifuge tube.
    5. Pellet the cells at 300 x g for 5 min at room temperature.
    6. Remove the supernatant. The supplemental cells are now ready for tissue construction.
      Note: if the supplemental cells are added at a concentration of 10% of the total cell number in the tissue, then for the defined tissues, this will require 50,000 supplemental cells per tissue as each tissue contains 500,000 cardiac cells (both CD90+ stromal cells and SIRPα+ myocytes).
  4. Create the Human Engineered Cardiac Tissues
    Note: Store all solutions on ice and the cells at room temperature. All volumes listed below are per tissue. Typically, approximately six tissues can be constructed from two 6-well plates of cardiac differentiations.
    1. Dilute 60.0 µl of the 5 mg/ml collagen stock to 3.125 mg/ml with 1.5 µl of 1 M NaOH, 9.6 µl of 10x PBS and 24.9 µl of sterile ultrapure deionized water.
      Critical step: Avoid the introduction of air bubbles to each solution during preparation as air bubbles will disrupt proper tissue formation.
    2. Add 12.0 µl of both 10x MEM and 0.2 N HEPES pH 9 to the dilute collagen mixture to create the collagen mix. Add both solutions down the side of the 15 ml centrifuge tube in order to avoid the introduction of air bubbles into the collagen mix.
    3. Add the basement membrane matrix to a final concentration of 0.9 mg/ml to the collagen mix and store on ice to create the final tissue mix. The final concentration of collagen should be 2 mg/ml.
    4. Add 500,000 of the reaggregated cells to the tissue mix (myocyte + fibroblast concentration is 20 million/ml) and fill to a final volume of 25 µl per tissue with either cell-free NBS media or 50,000 cells of the supplemental cell type of interest (e.g., hMSCs) and mix well to form an even cell suspension.
      Note: The number of supplemented cells will vary from for different applications. Here 10% supplementation is used.
    5. With care, pipet 25 µl of the cell suspension into each of the six wells in the bioreactor baseplate, without introducing air bubbles into the well.
    6. Push two rows of the PDMS force sensors onto either side of the polysulfone frame, forming 6 pairs of opposing posts, then invert the frame on top of the baseplate so that one pair of posts enters each well containing the cell suspension.
      Note: The polysulfone frame includes tabs to aid in alignment of the PDMS.
    7. Carefully place the bioreactor, baseplate down, into a 60 mm dish, then place the dish without its cover inside of a 10 cm dish, place the 10 cm cover on top, and move the entire bioreactor assembly into the tissue culture incubator, waiting two hours for the tissue to gel.
    8. After 2 hr, remove the bioreactor from the incubator and add 14 ml of NBS media to the entire assembly, enough to cover the baseplate. Return to the incubator, and change half of the media every day.
    9. Forty-eight hr later, carefully remove the baseplate by gently moving each side of the baseplate off the frame a few millimeters at a time, change the media, then return the bioreactor, tissues facing down, to the media.
    10. Continue changing half of the NBS culture media every day.
      Note: Spontaneous contractions of the tissue can be observed as early as 3 days after tissue construction, generating measureable twitch forces as early as day 5 to 7.

Results

To obtain cardiac myocytes, a slightly modified version of the Boheler and Lian differentiation methods is used30,31. It is imperative that the differentiation starts during the log-phase of cell growth, but also that the starting population is sufficiently confluent to obtain a useable number of cells after sorting (approximately 75% is optimal). Typically, for H7 hESCs, plating at a density of 140,000 hESCs per well of a 6-well dish in essential 8 media and 5% CO2 incubator maintained at 37 °...

Discussion

Construction of defined human engineered cardiac tissues (hECT) can provide a more consistent and reliable model of human cardiac myocyte function. Critically, all cellular and extracellular components in the system are known and can be manipulated as desired, thus removing the confounding influence of other unknown cell types resulting from the differentiation process. To balance rapid cell growth and high yield, it is preferable that the differentiation starts at 75% confluence of the hESCs, ideally four days after pla...

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgements

This work was supported by NIH (1F30HL118923-01A1) to T.J.C., NIH/NHLBI PEN contract HHSN268201000045C to K.D.C., the research grant council of Hong Kong TRS T13-706/11(K.D.C), NIH (R01 HL113499) to B.D.G., the American Heart Association (12PRE12060254) to R.J., and Research Grant Council of HKSAR (TBRS, T13-706/11) to R.L. Additional funding was provided to T.J.C. by NIH DRB 5T32GM008553-18 and as a traineeship on NIDCR-Interdisciplinary Training in Systems and Developmental Biology and Birth Defects T32HD075735. The authors also wish to gratefully acknowledge Arthur Autz at The Zahn Center of The City College of New York for assistance with machining the bioreactor and Mamdouh Eldaly for technical assistance. We also thank Dr. Kenneth Boheler for advice on cardiac differentiation, and Dr. Joshua Hare for generously providing human mesenchymal stem cells.

Materials

NameCompanyCatalog NumberComments
Cell CultureCompanyCatalog NumberComments
Amphotericin BSigma-AldrichA2411Prepare a 2.5 mg/ml stock in DMSO and filter-sterilize
B27 with InsulinLife Technologies17505055
B27 without InsulinLife TechnologiesA1895601
CHIR99021Stemgent04-0004Create 6 μM stock, then aliquot and store at -20 °C.
Essential 8 MediaLife TechnologiesA1517001
H7 Human Embryonic Stem CellsWiCellWA07
hESC Qualified Matrix, Corning MatrigelCorning354277Thaw on ice at 4 °C overnight then aliquot 150 μl into separate tubes and store at -20 °C.
IWR-1Sigma-AldrichI0161Create 10 mM stock and aliquot. Store at -20 °C
Neonatal Calf SerumLife Technologies16010159
Non-enzymatic Dissociation Reagent: Gentle Cell Dissociation ReagentStem Cell Technologies7174
Penicillin-StreptomycinCorning30-002-CI
RPMI 1640Life Technologies11875-093Keep refrigerated
Y-27632 (ROCK Inhibitor)Stemgent04-0012Resuspend to a 10 mM stock concentration, aliquot and store at -20 °C. Avoid freeze thaw cycles.
Cell SortingCompanyCatalog NumberComments
4’,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI)Life TechnologiesD1306
CD90-FITCBioLegend328107
Enzymatic Dissociation Reagent: Cell Detach Kit I (0.04 % Trypsin/ 0.03% EDTA, Trypsin neutralization solution and Hanks Buffered Salt Solution) PromoCellC-41200
Fetal Bovine SerumAtlanta BiologicsS11250
SIRPα-PE/Cy7BioLegend323807
Tissue ConstructionCompanyCatalog NumberComments
0.25% Trypsin/0.1% EDTAFisher Scientific25-053-CIOptional: For collection of supplemental cells of interest
10x MEMSigma-AldrichM0275-100ML
10x PBS PacketsSigma-AldrichP3813
Collagen, Bovine Type ILife TechnologiesA10644-01Keep on ice
DMEM/F12Life Technologies11330057
Dulbecco’s Modified Eagles Medium (DMEM), High GlucoseSigma-AldrichD5648
Polydimethylsiloxane (PDMS)Dow CorningSylgard 184
Sodium HEPESSigma-AldrichH3784
Sodium HydroxideSigma-Aldrich221465
MaterialsCompanyCatalog NumberComments
1.5 ml microcentrifuge tubesFisher ScientificNC0536757
15 ml polyproylene centrifuge tubeCorning352096
5 ml Polystyrene Round-Bottom TubeCorning352235With integrated 35 μm cell strainer
50 ml polyproylene centrifuge tubeCorning352070
6-well flat bottom tissue-culture treated plateCorning353046
Cell Scraper, DisposableBiologix70-2180
PolysulfoneMcMaster-Carr
Polytetrafluoroethylene (Teflon)McMaster-Carr
EquipmentCompanyCatalog NumberComments
Dissecting MicroscopeOlympusSZ-61Or similar, must have a mount for the high speed camera to attach
Electrical Pacing SystemAstro-Med, IncGrass S88X Stimulator
High Speed CameraPixelinkPL-B741UOr similar, but must be capable of 100 frames per second for accurate data acquisition
Plate Temperature ControlUsed to maintain media temperature during data acqusition.
Custom MaterialsCompanyCatalog NumberComments
LabView Post-tracking Programavailable upon request from the authors

References

  1. Serrao, G. W., et al. Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Eng. Part A. 18 (13-14), 1322-1333 (2012).
  2. Hansen, A., et al. Development of a drug screening platform based on engineered heart tissue. Circ. Res. 107 (1), 35-44 (2010).
  3. Fink, C., Ergün, S., Kralisch, D., Remmers, U., Weil, J., Eschenhagen, T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14 (5), 669-679 (2000).
  4. Yildirim, Y., et al. Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation. 116, 16-23 (2007).
  5. Sekine, H., et al. Cardiac Cell Sheet Transplantation Improves Damaged Heart Function via Superior Cell Survival in Comparison with Dissociated Cell Injection. Tissue Eng. Part A. 17 (23-24), 2973-2980 (2011).
  6. Lesman, A., et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng. Part A. 16 (1), 115-125 (2010).
  7. Turnbull, I. C., et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 28 (2), 644-654 (2014).
  8. Thavandiran, N., Dubois, N., et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc. Natl. Acad. Sci. U. S. A. 110 (49), 4698-4707 (2013).
  9. Schaaf, S., et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PloS One. 6 (10), e26397 (2011).
  10. Tulloch, N. L., et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109 (1), 47-59 (2011).
  11. Nunes, S. S., et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nature Methods. 10 (8), 781-787 (2013).
  12. Ma, Z., et al. Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials. 35 (5), 1367-1377 (2014).
  13. Baker, B. M., Chen, C. S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125 (13), 3015-3024 (2012).
  14. Pontes Soares, C., Midlej, V., de Oliveira, M. E. W., Benchimol, M., Costa, M. L., Mermelstein, C. 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PloS One. 7 (5), e38147 (2012).
  15. Burridge, P. W., Keller, G., Gold, J. D., Wu, J. C. Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming. Cell Stem Cell. 10 (1), 16-28 (2012).
  16. Mummery, C. L., Zhang, J., Ng, E. S., Elliott, D. A., Elefanty, A. G., Kamp, T. J. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111 (3), 344-358 (2012).
  17. Kim, C., et al. Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 19 (6), 783-795 (2010).
  18. Dubois, N. C., et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nature Biotechnol. 29 (11), 1011-1018 (2011).
  19. Hudon-David, F., Bouzeghrane, F., Couture, P., Thibault, G. Thy-1 expression by cardiac fibroblasts: lack of association with myofibroblast contractile markers. J. Mol. Cell. Cardiol. 42 (5), 991-1000 (2007).
  20. Gago-Lopez, N., et al. THY-1 receptor expression differentiates cardiosphere-derived cells with divergent cardiogenic differentiation potential. Stem Cell Reports. 2 (5), 576-591 (2014).
  21. Hare, J. M., Traverse, J. H., et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54 (24), 2277-2286 (2009).
  22. Bolli, R., et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 378 (9806), 1847-1857 (2011).
  23. Wollert, K. C., et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 364 (9429), 141-148 (2004).
  24. Hirsch, A., et al. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention: rationale and design of the HEBE trial--a prospective, multicenter, randomized trial. Am. Heart. J. 152 (3), 434-441 (2006).
  25. Jeevanantham, V., Butler, M., Saad, A., Abdel-Latif, A., Zuba-Surma, E. K., Dawn, B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 126 (5), 551-568 (2012).
  26. Meyer, G. P., et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur. Heart J. 30 (24), 2978-2984 (2009).
  27. Meyer, G. P., et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 113 (10), 1287-1294 (2006).
  28. Hirsch, A., et al. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur. Heart J. 32 (14), 1736-1747 (2011).
  29. Simari, R. D., et al. Bone marrow mononuclear cell therapy for acute myocardial infarction: a perspective from the cardiovascular cell therapy research network. Circ. Res. 114 (10), 1564-1568 (2014).
  30. Bhattacharya, S., et al. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J. Vis. Exp. (91), e52010 (2014).
  31. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. U. S. A. 109 (27), 1848-1857 (2012).
  32. Burridge, P. W., et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PloS One. 6 (4), e18293 (2011).
  33. Kean, T. J., Lin, P., Caplan, A. I., Dennis, J. E. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells Int. , 732742 (2013).
  34. Trachtenberg, B., et al. Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: A randomized, double-blind, placebo-controlled study of safety and efficacy. Am. Heart J. 161 (3), 487-493 (2011).
  35. Williams, A. R., et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ. Res. 108 (7), 792-796 (2011).
  36. Razeghi, P., Young, M. E., Alcorn, J. L., Moravec, C. S., Frazier, O. H., Taegtmeyer, H. Metabolic gene expression in fetal and failing human heart. Circulation. 104 (24), 2923-2931 (2001).
  37. Rajabi, M., Kassiotis, C., Razeghi, P., Taegtmeyer, H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev. 12 (3-4), 331-343 (2007).
  38. Taegtmeyer, H., Sen, S., Vela, D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann. N. Y. Acad. Sci. 1188, 191-198 (2010).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Human Engineered Cardiac TissuesCardiac Cell TherapyCardiac Tissue EngineeringCardiac Contractile FunctionCardiac TherapeuticsHuman Embryonic Stem Cell derived CardiomyocytesFACSSIRP Alpha PE Cy7CD90 FITC

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved