JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

方法通过表面氧化还原操纵液态金属的表面张力

Published: January 26th, 2016

DOI:

10.3791/53567

1Department of Chemical and Biomolecular Engineering, North Carolina State University
* These authors contributed equally

We present a method to control the interfacial energy of a liquid metal in an electrolyte via electrochemical deposition (or removal) of a surface oxide layer. This simple method can control the capillary behavior of gallium-based liquid metals by tuning the interfacial energy rapidly, significantly, and reversibly using modest voltages.

控制界面张力是一种有效的方法,用于操纵在亚毫米尺度,其中界面张力是一个主导力的形状,位置和流量的流体。有多种方法存在用于控制这种规模的含水和有机液体的界面张力;然而,这些技术具有有限的效用的液态金属,由于其大的界面张力。

液态金属可以形成在电子和电磁设备的软的,可拉伸和形状重构组件。虽然是可能的操纵通过机械方法 (例如,泵送)这些流体,电的方法是比较容易的小型化,控制和执行。然而,大多数电气技术有自己的约束:电式电介质需要大量的(千伏)潜力适度的驱动,电毛细管会影响界面张力相对较小的变化,而不断ELEctrowetting仅限于液态金属在毛细管的插头。

这里,我们提出用于通过电化学表面反应致动镓和镓基液体金属合金的方法。控制液体金属在电解质迅速的表面上的电化学势和可逆地变化的界面张力数量级超过两个数量(̴50020mN / m至接近零)。此外,这种方法只需要一个非常温和的电位(<1 V)的施加相对于反电极。在张力所得变化主要是由于表面氧化层,其作为表面活性剂的电化学沉积;除去氧化的增加的界面张力,且反之亦然。这种技术可以在各种电解质被应用,是独立于所依靠的基板。

This method provides a simple way to control the surface tension of liquid metals containing gallium. The method uses modest voltages (~1 V) applied directly to the liquid metal (relative to a counter electrode in the presence of electrolyte) to achieve enormous and reversible changes to the surface tension of the metal1.

Surface tension is a dominant force for liquids at small length scales and is important for a number of capillary phenomena including wetting, spreading, and surface-tension driven flow. Consequently, the ability to control surface tension is a sensible way to manipulate the shape, position, and flow of liquids....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1.操纵液态金属在电解液的界面张力

  1. 氧化
    1. 倾的含水电解质(酸性或碱性)到培养皿。以确保该氧化物完全除去,可使用的酸或碱与浓度大于0.1M的24(如1 M氢氧化钠或1M的HCl)。使用体积,将填补菜到大约1-3毫米的深度。避免与这些解决方案的皮肤接触。
    2. 用注射器放置在该电解质的镓基合金的下降(最佳之间10-500微升)。实例包括共晶镓铟(EGAIN)或镓铟锡(Galins.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1A示出了用于氧化和还原的简单的两电极技术的一个例子。在这种情况下,液态金属的70微升滴置于1 M氢氧化钠溶液接触的铜线,以建立电连接。的1 M氢氧化钠去除表面氧化物从金属和能使金属水珠,由于其界面张力。施加降和铂网状反电极之间一个2.5伏电势使液滴的表面氧化并在迁移朝向反电极1A.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

此方法控制使用小电压来驱动的表面氧化物的沉积和去除镓基液体金属的表面张力。尽管该方法只适用于在电解质溶液,它简单,和工作在多种不同的条件,但也有微妙之处值得​​留意。在无电势的,酸性和碱性溶液蚀刻掉氧化物27。的氧化电势的应用驱动表面氧化物在所有水电解液,包括酸性和碱性溶液的形成。然而,该氧化物在酸性或碱性溶液溶解竞争与氧化物的沉积,以防止.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors acknowledge support from Samsung, the NC State Chancellors Innovation Funds, NSF (CAREER CMMI-0954321 and Triangle MRSEC DMR-1121107), and Air Force Research Labs.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Eutectic Gallium IndiumIndium Corporation
Sodium HydroxideFisher Scientific2318-3
Hydrochloric AcidFisher ScientificA481-212
Sodium FluorideSigma-Aldrich201154
Optical AdhesiveNorlandNOA81
Polydimethylsiloxane (Sylgard-184)Dow CorningSilicone Elastomer Kit
Borosilicate Glass CapillariesFriedrich and DimmochB41972
Ag/AgCl Reference ElectrodeMicroelectrodes Inc.MI-401F
Voltage SourceKeithley3390
PotentiostatGamryRef 600
Laser CutterUniversal Laser SystemsVLS 3.50

  1. Khan, M. R., Eaker, C. B., Bowden, E. F., Dickey, M. D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. 111 (39), 14047-14051 (2014).
  2. Kataoka, D. E., Troian, S. M. Patterning liquid flow on the microscopic scale. Nature. 402 (6763), 794-797 (1999).
  3. Daniel, S., Chaudhury, M. K., Chen, J. C. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface. Science. 291 (5504), 633-636 (2001).
  4. Ichimura, K., Oh, S. K., Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science. 288 (5471), 1624-1626 (2000).
  5. Gallardo, B. S., et al. Electrochemical principles for active control of liquids on submillimeter scales. Science. 283 (5398), 57-60 (1999).
  6. Zhao, B., Moore, J. S., Beebe, D. J. Surface-Directed Liquid Flow Inside Microchannels. Science. 291 (5506), 1023-1026 (2001).
  7. Chaudhury, M. K., Whitesides, G. M. How to Make Water Run Uphill. Science. 256 (5063), 1539-1541 (1992).
  8. Lahann, J., et al. A reversibly switching surface. Science. 299 (5605), 371-374 (2003).
  9. Rogers, J. A., Someya, T., Huang, Y. Materials and Mechanics for Stretchable Electronics. Science. 327 (5973), 1603-1607 (2010).
  10. Bauer, S., et al. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 26 (1), 149-162 (2013).
  11. Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science. 311 (5758), 189-193 (2006).
  12. Monat, C., Domachuk, P., Eggleton, B. J. Integrated optofluidics: A new river of light. Nat. Photonics. 1 (2), 106-114 (2007).
  13. Schurig, D., et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314 (5801), 977-980 (2006).
  14. Dickey, M. D. Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Appl. Mater. Interfaces. 6 (21), 18369-18379 (2014).
  15. Dickey, M. D., et al. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18 (7), 1097-1104 (2008).
  16. Regan, M. J., et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys. Rev. B. 55 (16), 10786-10790 (1997).
  17. Giguère, P. A., Lamontagne, D. Polarography with a Dropping Gallium Electrode. Science. 120 (3114), 390-391 (1954).
  18. Frumkin, A., Polianovskaya, N., Grigoryev, N., Bagotskaya, I. Electrocapillary phenomena on gallium. Electrochim. Acta. 10 (8), 793-802 (1965).
  19. Lippmann, G. . Relations entre les phénomènes électriques et capillaires. , (1875).
  20. Tsai, J. T. H., Ho, C. M., Wang, F. C., Liang, C. T. Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium. Appl. Phys. Lett. 95 (25), 251110 (2009).
  21. Khan, M. R., Trlica, C., Dickey, M. D. Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Adv. Funct. Mater. 25 (5), 671-678 (2015).
  22. Saltman, W., Nachtrieb, N. The Electrochemistry of Gallium. J. Electrochem. Soc. 100, 126-130 (1953).
  23. Perkins, R. Anodic-Oxidation of Gallium in Alkaline-Solution. J. Electroanal. Chem. 101, 47-57 (1979).
  24. Xu, Q., Oudalov, N., Guo, Q., Jaeger, H. M., Brown, E. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids. 24, 063101 (2012).
  25. Rotenberg, Y., Boruvka, L., Neumann, A. W. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93, 169-183 (1983).
  26. Xia, Y., Whitesides, G. M. Soft Lithography. Annu. Rev. Mater. Sci. 28 (1), 153-184 (1998).
  27. Pourbaix, M. . Atlas of Electrochemical Equilibria in Aqueous Solutions. , (1974).
  28. Gough, R. C., et al. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro Nano Syst. Lett. 3 (1), 1-9 (2015).
  29. Wang, M., Trlica, C., Khan, M. R., Dickey, M. D., Adams, J. J. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. J. Appl. Phys. 117 (19), 194901 (2015).

Tags

107 EGAIN

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved