JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

Een methode om oppervlaktespanning van een Liquid Metal Manipuleer via oxidatie en reductie

Published: January 26th, 2016

DOI:

10.3791/53567

1Department of Chemical and Biomolecular Engineering, North Carolina State University
* These authors contributed equally

We present a method to control the interfacial energy of a liquid metal in an electrolyte via electrochemical deposition (or removal) of a surface oxide layer. This simple method can control the capillary behavior of gallium-based liquid metals by tuning the interfacial energy rapidly, significantly, and reversibly using modest voltages.

Controlling grensvlakspanning is een effectieve methode voor het manipuleren van de vorm, positie en vloeistofstroom op sub-millimeter lengteschalen, waarbij grensvlakspanning is een dominante kracht. Verschillende werkwijzen bestaan ​​voor de grensvlakspanning van waterige en organische vloeistoffen op deze schaal; Maar deze technieken nut voor vloeibare metalen beperkt vanwege hun grote grensvlakspanning.

Vloeibare metalen kunnen zacht, rekbaar, en de vorm-herconfigureerbare componenten in elektronische en elektromagnetische apparaten vormen. Hoewel het mogelijk is deze vloeistoffen via mechanische methoden (bijvoorbeeld pompen) te manipuleren, elektrische werkwijzen gemakkelijker te miniaturiseren, controle en implementeren. Echter, de meeste elektrische technieken hebben hun beperkingen: electrowetting-on-diëlektrische vereist grote (kV) potentieel voor bescheiden bediening, electrocapillarity kunnen beïnvloeden relatief kleine veranderingen in de grensvlakspanning en continue electrowetting beperkt tot pluggen van het vloeibare metaal in capillairen.

Hier presenteren we een werkwijze voor het bedienen van gallium en gallium gebaseerde vloeibare metaallegeringen via een elektrochemische reactie oppervlak. Beheersing van de elektrochemische potentiaal van het oppervlak van het vloeibare metaal in elektrolyt snel en wederzijds verandert de grensvlakspanning meer dan twee orden van grootte (̴500 mN / m tot bijna nul). Bovendien vereist deze werkwijze slechts een zeer geringe potentiaal (<1 V) aangebracht ten opzichte van een tegenelektrode. De resulterende verandering in spanning vooral door de elektrochemische afzetting van een oppervlak oxidelaag, die fungeert als een oppervlakteactieve stof; verwijderen van de oxide verhoogt de grensvlakspanning en vice versa. Deze techniek kan worden toegepast in een breed scala van elektrolyten en onafhankelijk is van het substraat waarop het rust.

This method provides a simple way to control the surface tension of liquid metals containing gallium. The method uses modest voltages (~1 V) applied directly to the liquid metal (relative to a counter electrode in the presence of electrolyte) to achieve enormous and reversible changes to the surface tension of the metal1.

Surface tension is a dominant force for liquids at small length scales and is important for a number of capillary phenomena including wetting, spreading, and surface-tension driven flow. Consequently, the ability to control surface tension is a sensible way to manipulate the shape, position, and flow of liquids....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Manipulatie van de grensvlakspanning van Liquid Metal in Elektrolyt

  1. Oxydatie
    1. Giet een waterig elektrolyt (zuur of basisch) in een petrischaal. Om het oxide volledig verwijderd, gebruikt een zuur of base met een hogere concentratie dan 0,1 M 24 (bijvoorbeeld 1 M NaOH of 1 M HCl). Gebruik een volume dat de schotel zal vullen tot een diepte van ongeveer 1-3 mm. Vermijd contact van de huid met deze oplossingen.
    2. Gebruik een spuit een druppel (optimaal tussen 10-500 pl) van.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figuur 1 A toont een voorbeeld van de eenvoudige twee-elektroden techniek voor oxidatie en reductie. In dat geval is een 70 ul druppel van het vloeibare metaal in een 1 M NaOH-oplossing in contact een koperdraad om een ​​elektrische verbinding. De 1 M NaOH verwijdert het oppervlak oxide van het metaal en kan de metalen in pareltjes vanwege de grensvlakspanning. Het toepassen van een 2,5 V potentiaal tussen de druppel en een plat.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Deze werkwijze regelt de oppervlaktespanning van gallium gebaseerde vloeibare metalen met behulp van kleine spanningen aan de afzetting en het verwijderen van een oppervlak oxide drijven. Hoewel de methode alleen werkt in elektrolytoplossingen, is het eenvoudig, en werkt in een groot aantal verschillende omstandigheden, maar er zijn subtiele vermeldenswaard. Aangezien elektrische potentiaal, zowel zure en basische oplossingen etsen weg het oxyde 27. De toepassing van een oxidatieve potentieel drijft de .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors acknowledge support from Samsung, the NC State Chancellors Innovation Funds, NSF (CAREER CMMI-0954321 and Triangle MRSEC DMR-1121107), and Air Force Research Labs.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Eutectic Gallium IndiumIndium Corporation
Sodium HydroxideFisher Scientific2318-3
Hydrochloric AcidFisher ScientificA481-212
Sodium FluorideSigma-Aldrich201154
Optical AdhesiveNorlandNOA81
Polydimethylsiloxane (Sylgard-184)Dow CorningSilicone Elastomer Kit
Borosilicate Glass CapillariesFriedrich and DimmochB41972
Ag/AgCl Reference ElectrodeMicroelectrodes Inc.MI-401F
Voltage SourceKeithley3390
PotentiostatGamryRef 600
Laser CutterUniversal Laser SystemsVLS 3.50

  1. Khan, M. R., Eaker, C. B., Bowden, E. F., Dickey, M. D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. 111 (39), 14047-14051 (2014).
  2. Kataoka, D. E., Troian, S. M. Patterning liquid flow on the microscopic scale. Nature. 402 (6763), 794-797 (1999).
  3. Daniel, S., Chaudhury, M. K., Chen, J. C. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface. Science. 291 (5504), 633-636 (2001).
  4. Ichimura, K., Oh, S. K., Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science. 288 (5471), 1624-1626 (2000).
  5. Gallardo, B. S., et al. Electrochemical principles for active control of liquids on submillimeter scales. Science. 283 (5398), 57-60 (1999).
  6. Zhao, B., Moore, J. S., Beebe, D. J. Surface-Directed Liquid Flow Inside Microchannels. Science. 291 (5506), 1023-1026 (2001).
  7. Chaudhury, M. K., Whitesides, G. M. How to Make Water Run Uphill. Science. 256 (5063), 1539-1541 (1992).
  8. Lahann, J., et al. A reversibly switching surface. Science. 299 (5605), 371-374 (2003).
  9. Rogers, J. A., Someya, T., Huang, Y. Materials and Mechanics for Stretchable Electronics. Science. 327 (5973), 1603-1607 (2010).
  10. Bauer, S., et al. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 26 (1), 149-162 (2013).
  11. Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science. 311 (5758), 189-193 (2006).
  12. Monat, C., Domachuk, P., Eggleton, B. J. Integrated optofluidics: A new river of light. Nat. Photonics. 1 (2), 106-114 (2007).
  13. Schurig, D., et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314 (5801), 977-980 (2006).
  14. Dickey, M. D. Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Appl. Mater. Interfaces. 6 (21), 18369-18379 (2014).
  15. Dickey, M. D., et al. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18 (7), 1097-1104 (2008).
  16. Regan, M. J., et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys. Rev. B. 55 (16), 10786-10790 (1997).
  17. Giguère, P. A., Lamontagne, D. Polarography with a Dropping Gallium Electrode. Science. 120 (3114), 390-391 (1954).
  18. Frumkin, A., Polianovskaya, N., Grigoryev, N., Bagotskaya, I. Electrocapillary phenomena on gallium. Electrochim. Acta. 10 (8), 793-802 (1965).
  19. Lippmann, G. . Relations entre les phénomènes électriques et capillaires. , (1875).
  20. Tsai, J. T. H., Ho, C. M., Wang, F. C., Liang, C. T. Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium. Appl. Phys. Lett. 95 (25), 251110 (2009).
  21. Khan, M. R., Trlica, C., Dickey, M. D. Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Adv. Funct. Mater. 25 (5), 671-678 (2015).
  22. Saltman, W., Nachtrieb, N. The Electrochemistry of Gallium. J. Electrochem. Soc. 100, 126-130 (1953).
  23. Perkins, R. Anodic-Oxidation of Gallium in Alkaline-Solution. J. Electroanal. Chem. 101, 47-57 (1979).
  24. Xu, Q., Oudalov, N., Guo, Q., Jaeger, H. M., Brown, E. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids. 24, 063101 (2012).
  25. Rotenberg, Y., Boruvka, L., Neumann, A. W. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93, 169-183 (1983).
  26. Xia, Y., Whitesides, G. M. Soft Lithography. Annu. Rev. Mater. Sci. 28 (1), 153-184 (1998).
  27. Pourbaix, M. . Atlas of Electrochemical Equilibria in Aqueous Solutions. , (1974).
  28. Gough, R. C., et al. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro Nano Syst. Lett. 3 (1), 1-9 (2015).
  29. Wang, M., Trlica, C., Khan, M. R., Dickey, M. D., Adams, J. J. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. J. Appl. Phys. 117 (19), 194901 (2015).

Tags

Chemie

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved