JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Chemistry

Une méthode pour manipuler tension de surface du liquide par l'intermédiaire d'un métal oxydation de surface et la réduction

Published: January 26th, 2016

DOI:

10.3791/53567

1Department of Chemical and Biomolecular Engineering, North Carolina State University
* These authors contributed equally

We present a method to control the interfacial energy of a liquid metal in an electrolyte via electrochemical deposition (or removal) of a surface oxide layer. This simple method can control the capillary behavior of gallium-based liquid metals by tuning the interfacial energy rapidly, significantly, and reversibly using modest voltages.

Commande de la tension interfaciale est une méthode efficace pour manipuler la forme, la position et l'écoulement des fluides à des échelles de longueur submillimétriques, où la tension interfaciale est une force dominante. Une variété de procédés existent pour commander la tension interfaciale des liquides aqueux et organiques sur cette échelle; Cependant, ces techniques ont une utilité limitée pour les métaux liquides, en raison de leur grande tension interfaciale.

Métaux liquides peuvent former des composants souples, extensibles, et la forme reconfigurable dans des dispositifs électroniques et électromagnétiques. Bien qu'il soit possible de manipuler ces fluides par des méthodes mécaniques (par exemple, pompage), méthodes électriques sont plus faciles à miniaturiser, le contrôle et la mise en œuvre. Cependant, la plupart des techniques électriques ont leurs propres contraintes: électromouillage sur diélectrique nécessite de grandes (kV) potentiels pour modeste actionnement, électrocapillarité peut affecter relativement petits changements dans la tension interfaciale, et ele continuctrowetting est limitée à fiches du métal liquide dans les capillaires.

Ici, nous présentons une méthode pour actionner le gallium et des alliages de métaux liquide à base de gallium par une réaction électrochimique de surface. Le contrôle du potentiel électrochimique sur la surface du métal liquide dans l'électrolyte modifie rapidement et de manière réversible la tension interfaciale de plus de deux ordres de grandeur (̴500 mN / m à près de zéro). En outre, ce procédé nécessite seulement un potentiel très modeste (<1 V) appliquée par rapport à une contre-électrode. La variation résultante de la tension est due principalement au dépôt électrochimique d'une couche d'oxyde de surface, qui agit comme un agent tensio-actif; enlèvement de l'oxyde augmente la tension interfaciale, et vice versa. Cette technique peut être appliquée dans une grande variété d'électrolytes et est indépendante du substrat sur lequel elle repose.

This method provides a simple way to control the surface tension of liquid metals containing gallium. The method uses modest voltages (~1 V) applied directly to the liquid metal (relative to a counter electrode in the presence of electrolyte) to achieve enormous and reversible changes to the surface tension of the metal1.

Surface tension is a dominant force for liquids at small length scales and is important for a number of capillary phenomena including wetting, spreading, and surface-tension driven flow. Consequently, the ability to control surface tension is a sensible way to manipulate the shape, position, and flow of liquids....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. La manipulation de la tension interfaciale de Liquid Metal dans l'électrolyte

  1. Oxydation
    1. Verser un électrolyte aqueux (acide ou basique) dans une boîte de Petri. Pour faire en sorte que l'oxyde est complètement enlevée, utiliser un acide ou une base à une concentration supérieure à 0,1 M 24 (par exemple NaOH 1 M ou HCl 1 M). Utiliser un volume qui permettra de combler le plat à une profondeur d'environ 1-3 mm. Éviter tout contact avec la peau avec ces solut.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

A la figure 1 montre un exemple de la technique simple à deux électrodes pour oxydation et de réduction. Dans ce cas, une goutte de 70 ul du métal liquide placé dans une NaOH 1 M de solution de contacts un fil de cuivre pour établir une connexion électrique. Le NaOH 1 M enlève l'oxyde de métal de la surface et permet au métal à perler en raison de sa tension interfaciale. L'application d'un potentiel de 2,5 V .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Cette méthode contrôle la tension de surface des métaux liquides à base de gallium en utilisant de petites tensions pour entraîner le dépôt et le retrait d'un oxyde de surface. Bien que la méthode ne fonctionne que dans les solutions électrolytiques, il est simple, et travaille dans une grande variété de conditions différentes, mais il ya des subtilités à noter. En l'absence de tension électrique, les deux solutions acides et basiques etch à une distance de l'oxyde 27. L'.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors acknowledge support from Samsung, the NC State Chancellors Innovation Funds, NSF (CAREER CMMI-0954321 and Triangle MRSEC DMR-1121107), and Air Force Research Labs.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Eutectic Gallium IndiumIndium Corporation
Sodium HydroxideFisher Scientific2318-3
Hydrochloric AcidFisher ScientificA481-212
Sodium FluorideSigma-Aldrich201154
Optical AdhesiveNorlandNOA81
Polydimethylsiloxane (Sylgard-184)Dow CorningSilicone Elastomer Kit
Borosilicate Glass CapillariesFriedrich and DimmochB41972
Ag/AgCl Reference ElectrodeMicroelectrodes Inc.MI-401F
Voltage SourceKeithley3390
PotentiostatGamryRef 600
Laser CutterUniversal Laser SystemsVLS 3.50

  1. Khan, M. R., Eaker, C. B., Bowden, E. F., Dickey, M. D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. 111 (39), 14047-14051 (2014).
  2. Kataoka, D. E., Troian, S. M. Patterning liquid flow on the microscopic scale. Nature. 402 (6763), 794-797 (1999).
  3. Daniel, S., Chaudhury, M. K., Chen, J. C. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface. Science. 291 (5504), 633-636 (2001).
  4. Ichimura, K., Oh, S. K., Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science. 288 (5471), 1624-1626 (2000).
  5. Gallardo, B. S., et al. Electrochemical principles for active control of liquids on submillimeter scales. Science. 283 (5398), 57-60 (1999).
  6. Zhao, B., Moore, J. S., Beebe, D. J. Surface-Directed Liquid Flow Inside Microchannels. Science. 291 (5506), 1023-1026 (2001).
  7. Chaudhury, M. K., Whitesides, G. M. How to Make Water Run Uphill. Science. 256 (5063), 1539-1541 (1992).
  8. Lahann, J., et al. A reversibly switching surface. Science. 299 (5605), 371-374 (2003).
  9. Rogers, J. A., Someya, T., Huang, Y. Materials and Mechanics for Stretchable Electronics. Science. 327 (5973), 1603-1607 (2010).
  10. Bauer, S., et al. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 26 (1), 149-162 (2013).
  11. Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science. 311 (5758), 189-193 (2006).
  12. Monat, C., Domachuk, P., Eggleton, B. J. Integrated optofluidics: A new river of light. Nat. Photonics. 1 (2), 106-114 (2007).
  13. Schurig, D., et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314 (5801), 977-980 (2006).
  14. Dickey, M. D. Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Appl. Mater. Interfaces. 6 (21), 18369-18379 (2014).
  15. Dickey, M. D., et al. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18 (7), 1097-1104 (2008).
  16. Regan, M. J., et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys. Rev. B. 55 (16), 10786-10790 (1997).
  17. Giguère, P. A., Lamontagne, D. Polarography with a Dropping Gallium Electrode. Science. 120 (3114), 390-391 (1954).
  18. Frumkin, A., Polianovskaya, N., Grigoryev, N., Bagotskaya, I. Electrocapillary phenomena on gallium. Electrochim. Acta. 10 (8), 793-802 (1965).
  19. Lippmann, G. . Relations entre les phénomènes électriques et capillaires. , (1875).
  20. Tsai, J. T. H., Ho, C. M., Wang, F. C., Liang, C. T. Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium. Appl. Phys. Lett. 95 (25), 251110 (2009).
  21. Khan, M. R., Trlica, C., Dickey, M. D. Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Adv. Funct. Mater. 25 (5), 671-678 (2015).
  22. Saltman, W., Nachtrieb, N. The Electrochemistry of Gallium. J. Electrochem. Soc. 100, 126-130 (1953).
  23. Perkins, R. Anodic-Oxidation of Gallium in Alkaline-Solution. J. Electroanal. Chem. 101, 47-57 (1979).
  24. Xu, Q., Oudalov, N., Guo, Q., Jaeger, H. M., Brown, E. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids. 24, 063101 (2012).
  25. Rotenberg, Y., Boruvka, L., Neumann, A. W. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93, 169-183 (1983).
  26. Xia, Y., Whitesides, G. M. Soft Lithography. Annu. Rev. Mater. Sci. 28 (1), 153-184 (1998).
  27. Pourbaix, M. . Atlas of Electrochemical Equilibria in Aqueous Solutions. , (1974).
  28. Gough, R. C., et al. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro Nano Syst. Lett. 3 (1), 1-9 (2015).
  29. Wang, M., Trlica, C., Khan, M. R., Dickey, M. D., Adams, J. J. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. J. Appl. Phys. 117 (19), 194901 (2015).

Tags

Chimie

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved