Sign In

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present a protocol for the dissection of hind limb long bones (femurs and tibiae) from the laboratory mouse. We further describe a rapid technique for bone marrow isolation from these bones that utilizes centrifugation for removal of bone marrow from the bone marrow space.

Abstract

Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability.

Introduction

The study of long bones and the cells of the bone marrow is central to a myriad of research disciplines, including, but not limited to, bone biology, cancer biology, immunology, hematology, and biomechanics. The bone is a highly dynamic organ that together with the cartilage forms the skeleton to provide mechanical support against loading and protection of the internal organs. In addition, the mineral components of bone are a storage sink for the critical signaling molecules calcium and phosphorus, as well as other factors1. Finally, bones house the bone marrow and, together with metabolically active bone forming osteoblasts and bone resorbing osteoclasts, provide the stem cell niche necessary for the maintenance of hematopoietic and lymphoid cell populations.

Bone and bone marrow are affected in many disorders, often leading to bone marrow dysfunction, severe bone pain, and pathologic fracture. Bone is a common site of metastasis in many solid tumors, most notably breast cancer and prostate cancer, where tumor cells directly engage the bone marrow niche to initiate the vicious cycle of bone metastasis and displace hematopoietic stem cells2,3. Hematopoietic malignancies including myeloma and leukemia are characterized by bone marrow dysfunction as well as deregulation of healthy bone remodeling1. Other non-malignant skeletal disorders are also active areas of research, such as osteoarthritis, osteoporosis, scoliosis, and rickets. Even in an otherwise healthy individual, biomechanical failure in a bone leads to a painful fracture. All of these disorders represent active areas of research with the goal of identifying new preventative measures and treatment regimens to reduce morbidity and mortality.

To research the plethora of roles of the bone and the bone marrow, both under physiologic and pathologic conditions, it is critical for researchers to have a simple and efficient standardized method for dissection of the mouse long bones for rapid processing of large in vivo experiments. The dissection protocol outlined here is suitable for all long bone analyses including ex vivo imaging, histology, histomorphometry, and strength testing, among others. Similarly, a standardized bone marrow isolation method with high bone marrow cell recovery and low inter-user variability is important for experimental analysis such as fluorescence-activated cell sorting (FACS) or quantitative PCR (qPCR) as well as downstream applications such as primary cell culture of bone marrow cells.

Protocol

Alt dyret arbejde blev godkendt ved Institutional Animal pleje og Brug udvalg i overensstemmelse med anbefalingerne beskrevet i Guide for pleje og anvendelse af forsøgsdyr i National Institutes of Health.

1. Hind Limb Long Bone Dissection

  1. Aflive musen efter institutionelle retningslinier.
  2. Placer musen i liggende stilling og anbringer ved at fastgøre alle fire ben gennem mus Trædepuder under anklen fælles.
  3. Spray mus med 70% ethanol, grundig dousing benene.
  4. Lave et lille snit til højre for midterlinjen i underlivet, lige over hoften.
  5. Forlæng snittet ned i benet og forbi ankelleddet.
  6. Træk huden og sender en quadriceps muskel forankret til proksimale ende af lårbenet for at blotlægge den forreste side af lårbenet og pin ud fra benet, hvilket placerer stiften i en 45 graders vinkel fra brættet.
  7. Med blade af saksen mod den bageste side af lårbenet, skæres hamstrings væk fra knæleddet.
  8. Træk huden og forstrækning muskler forankret til proksimale ende af lårbenet til at afsløre den bageste side af lårbenet og pin ud fra benet, placerer stiften i en 45 graders vinkel fra bestyrelsen.
  9. Med tangen, holde den distale ende af lårbenet, lige over knæleddet. Guide bladene på saks på begge sider af lårbensskaftet mod hofteleddet, og pas på ikke at skære i selve lårbenet.
  10. Efter at have nået lårbenshovedet, angivet med saksen åbner lidt, vride saksen med toppen kniv af saksen bevæger direkte over lårbenshovedet at forskubbe lårben, og pas på ikke at snap knoglen under lårbenshovedet.
  11. Tag fat i toppen af ​​lårbensskaftet med pincet, skæres det bløde væv væk fra femurhovedet at frigøre det fra acetabulum.
  12. Træk hele benet knogle, herunderfemur, knæet, og skinneben, op og væk fra kroppen, omhyggeligt bortskære bindevævet og muskler forbinder benet til huden.
  13. Overextend ankelleddet og igen bruge saksen i en drejebevægelse at forskubbe den skinneben.
  14. Gribe distale ende af skinnebenet, pas på ikke at adskille de sener, træk tibia op og væk fra kroppen og opslagstavlen.
  15. Skær eventuelt resterende bindevæv fastgørelse af lang knogle på musen ved knæet.
  16. Fjern alle yderligere muskel eller bindevæv fastgjort til lårbenet og skinnebenet.
  17. For alle applikationer, der kræver knoglen at forblive intakt (histologi, histomorfometri, biomekanisk testning osv.) Fortsætte med standard in-house-protokoller (som i 4-7). For at isolere knoglemarv, gå videre til punkt 2.

2. Lang Bone Forberedelse Bone Marrow Isolation

  1. Ved hjælp af pincet, tag fat i lårbenet med patella vender væk ennd den proximale ende (lårbenshovedet) ned.
  2. Overextend knæleddet og bruge saksen i en drejebevægelse at forskubbe skinneben og lårben.
  3. Skær enhver bindevæv holder lårben og skinneben sammen.
  4. Brug af pincet, fat femur med den forreste side væk og den proximale ende (lårbenshovedet slut) ned.
  5. Guide saksen op lårbensskaftet til kondylerne.
  6. roterer forsigtigt saksen frem og tilbage for at fjerne kondyler, patella, og epifysen at eksponere metafysen.
  7. Fjerne eventuelle yderligere muskel eller bindevæv fastgjort til lårbenet med pincet, sakse, og Kimwipes.
  8. Under anvendelse tangen, fat tibia med den forreste side væk og den distale ende (ankel slut) ned.
  9. Hvis tibial epiphysis er intakt, guide saksen op skinnebenet aksel til kondyler.
  10. Drej forsigtigt saksen frem og tilbage for at fjerne kondyler og epiphysis at eksponere metaphysis.
  11. Fjerne eventuelle yderligere muskel eller bindevæv fastgjort til tibia med pincet, sakse, og Kimwipes.

3. Bone Marrow Isolering

  1. Skubbe en 18 G nål gennem bunden af ​​en 0,5 ml mikrocentrifugerør.
  2. Placer de lange knogler (maks 2 lårben og 2 tibia) i røret, knæ-ende nedad ende ned og luk låget.
  3. Nest 0,5 ml mikrocentrifugerør i en 1,5 ml mikrocentrifugerør.
  4. Centrifuger indlejrede rør ved ≥10,000 xg i en mikrocentrifuge i 15 sek.
  5. Kontrollere, at knoglemarven er blevet spundet ud af knoglerne ved visuel inspektion. Knoglerne skal vises hvide og der bør være en stor visuel pellet i større rør.
  6. Kassér 0,5 ml mikrocentrifugerør i knoglerne.
  7. Suspender knoglemarven i passende opløsning (f.eks PBS, dyrkningsmedier FACS-buffer) og fortsæt med eksperimentelle protokol (DNA, RNA, protein eller isolation,FACS-analyse, eller primær celle kultur).

Representative Results

Den her beskrevne protokol er optimeret til hurtig dissektion af muse lårben og skinneben med et minimum af beskadigelse af knoglevævet. Denne teknik er egnet til en række downstream analyser, herunder biomekanik undersøgelser, histomorfometri (figur 1A - B), og histologi (figur 1C) 4,7. Det repræsentative histomophometric micoCT 3D-rekonstruktion (Figur 1A - B) viser, at både det spongiosaen og kortikal shell opretholdes, der giver mulighed for præcis kvantificering af de standardiserede strukturelle parametre for knoglehistomorfometri, herunder trabekulære tal, tykkelse og afstand; knoglevolumen; og kortikal tykkelse, blandt andre foranstaltninger 8. Det repræsentative histologiske afsnit viser en H og E farvede formalin-fikseret, og afkalket skinneben (figur 1C). Billedet viser integriteten af ​​både den forkalkede Bén og cellulære knoglemarv til histologisk analyse.

Proceduren knoglemarven isolation bevarer steriliteten af ​​knoglemarven plads, har lav håndtering for at reducere forurening, og kræver ikke skæring af den lange knogle, hvilket reducerer tab af knoglemarv udbytte. Dette knoglemarv er velegnet til mange efterfølgende anvendelser, herunder flowcytometri 5 og PCR-analyser. Derudover kan denne procedure anvendes til at isolere knoglemarv til primær cellekultur af knoglemarvsceller, inklusive osteoklaster osteoblaster og figur 2a (B) - 4,6.

figure-representative results-1687
Figur 1. histomorfologisk og histologiske analyser af Mouse Long Bone. Tredimensionale microCT rekonstruktion af en mus skinneben viser (A) den ydre kortikale skal og (B Trong>) trabekulær knogle (skala bar = 0,5 mm). (C) Histologisk H & E farvning af en afkalket og tværsnit tibia (4x). Billeder courtesy of Katherine Weilbaecher, Washington University School of Medicine, USA. Klik her for at se et større version af dette tal.

figure-representative results-2404
Figur 2. Primær Bone Marrow Cell Culture for Differentiering af osteoklaster og osteoblaster. (A) TRAP farvning for flerkernede osteoklaster efter 7 dage i osteoclastogenic medier (4x). (B) Alkalisk phosphatase (lilla farve) for osteoblaster og alizarinrødt (rød farve) plet til mineralisering efter 21 dage i osteogent medier. Billeder udlånt af Katherine Weilbaecher, Washington University School of Medicine USA.Iles / ftp_upload / 53936 / 53936fig2large.jpg "target =" _ blank "> Klik her for at se en større version af dette tal.

Discussion

We present a simple and efficient method for removal of mouse hind long bones and subsequent bone marrow isolation. This method maintains the high structural and cellular integrity of the bones and bone marrow and has low handling time, minimizing the likelihood of user-induced fracture or bone scoring that may influence downstream analyses. In addition, the centrifugation method for isolating bone marrow does not require cutting the bone to expose the bone marrow space or fluid to flush the bone marrow, reducing potential points of contamination. Moreover, the centrifuge technique is relatively high-throughput with lower hands-on time than other methods, thus reducing processing time.

High variation is inherent to in vivo mouse studies due to high mouse-to-mouse phenotypic variation. In order to maximize the research impact of expensive and labor-intensive mouse studies, it is critical to minimize technical experimental error9,10. Time from animal sacrifice to downstream analysis or tissue fixation introduces experimental variation that may overcome subtle changes and reduce large differences between groups. Therefore, rapid processing of samples is essential for accurate data analysis. The long bone dissection and bone marrow isolation techniques described here are optimized for rapid processing of animals and samples to reduce technical variation.

This protocol can be widely applied to many research fields, including investigation of the bone tissue itself or interrogation of the cells of the bone marrow. In addition, this straightforward approach to long bone dissection will enable researchers in related fields to directly interrogate bone contributions in order to expand our knowledge of bone marrow dysfunction in otherwise understudied pathologies.

Acknowledgements

This work was supported by NCI grant nos. U54CA143803, CA163124, CA093900, and CA143055 to K.J.P. The authors thank the current and past members of the Weilbaecher lab, especially Katherine Weilbaecher, Michelle Hurchla, and Hongju Deng, and members of the Brady Urological Institute, especially members of the Pienta laboratory for critical reading of the manuscript.

Materials

NameCompanyCatalog NumberComments
pinboard
pins
70% ethanol
dissection sissors 
dissection forceps
KimwipesKimberly-Clark34120
16 guage needle
1.5 ml microcentrifuge tube
0.5 ml microcentrifuge tube
microcentrifuge

References

  1. McHayleh, W. M., Ellerman, J., Roodman, G. D. Ch. 80. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. , 379-381 (2008).
  2. Weilbaecher, K. N., Guise, T. A., McCauley, L. K. Cancer to bone: a fatal attraction. Nat Rev Cancer. 11 (6), 411-425 (2011).
  3. Pedersen, E. A., Shiozawa, Y., Pienta, K. J., Taichman, R. S. The prostate cancer bone marrow niche: more than just 'fertile soil. Asian J Androl. 14 (3), 423-427 (2012).
  4. Amend, S. R., et al. Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts. J Bone Miner Res. 30 (1), 106-115 (2015).
  5. Hurchla, M. A., et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia. 27 (2), 430-440 (2013).
  6. Rauch, D. A., et al. The ARF tumor suppressor regulates bone remodeling and osteosarcoma development in mice. PLoS One. 5 (12), e15755 (2010).
  7. Su, X., et al. The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodeling. J Clin Invest. 122 (10), 3579-3592 (2012).
  8. Dempster, D. W., et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 28 (1), 2-17 (2013).
  9. Begley, C. G., Ellis, L. M. Drug development: Raise standards for preclinical cancer research. Nature. 483 (7391), 531-533 (2012).
  10. Festing, M. F., Altman, D. G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 43 (4), 244-258 (2002).

Explore More Articles

ImmunologiBoneknoglemarvmus dissektionknogle biologikr ft biologiimmunologi

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved