JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The social amoeba Dictyostelium discoideum undergoes a developmental transition into a multicellular organism when starved. The evolutionary conserved protein coronin A plays a crucial role in the initiation of development. Using aggregation assays as our main method, we aim to elucidate the role of coronin A in early development.

Abstract

Dictyostelium discoideum amoeba are found in soil, feeding on bacteria. When food sources become scarce, they secrete factors to initiate a multicellular development program, during which single cells chemotax towards aggregation centers1-4. This process is dependent on the release of cyclic adenosine monophosphate (cAMP)5. cAMP is produced in waves through the concerted action of adenylate cyclase and phosphodiesterases, and binds to G protein-coupled cAMP receptors6,7. A widely used assay to analyze the mechanisms involved in the developmental cycle of the lower eukaryote Dictyostelium discoideum is based on the observation of cell aggregation in submerged conditions8,9. This protocol describes the analysis of the role of coronin A in the developmental cycle by starvation in tissue-culture plates submerged in balanced salt solution (BSS)10. Coronin A is a member of the widely conserved protein family of coronins that have been implicated in a wide variety of activities11,12. Dictyostelium cells lacking coronin A are unable to form multicellular aggregates, and this defect can be rescued by supplying pulses of cAMP, suggesting that coronin A acts upstream of the cAMP cascade10. The techniques described in these studies provide robust tools to investigate functions of proteins during the initial stages of the developmental cycle of Dictyostelium discoideum upstream of the cAMP cascade. Therefore, utilizing this aggregation assay may allow the further study of coronin A function and advance our understanding of coronin biology.

Introduction

The coronin family of proteins is highly conserved throughout eukaryotes. These proteins are characterized by the presence of an amino-terminal tryptophan-aspartate (WD) repeat-containing region followed by a unique region connected to a carboxy-terminal coiled-coil domain13,14 (Figure 1). Coronins have been implicated in a variety of cellular functions, including cytoskeletal regulation and signal transduction12. In mammals, up to six short coronin molecules (coronin 1-6) as well as a 'tandem' coronin 7, can be co-expressed12,15. Coronin 1 is the most extensively studied family member, and was shown to be involved in pathogen destruction, T cell survival and neuronal signaling. How, exactly, coronin 1 carries out these activities remains unclear. While coronin 1 was shown to regulate Ca2+ and cAMP-dependent signaling as well as F-actin cytoskeleton modulation 16-18, the potential co-expression of up to 7 family members in mammals has made it challenging to study the molecular function of coronins in these systems, due to potential redundancies. Unlike mammalian organisms, the lower eukaryote Dictyostelium discoideum expresses only two coronin family members (coronin A, the ortholog of mammalian coronin 1 and coronin B, the ortholog of mammalian coronin 7) with apparently non-redundant functions15,19,20. This fact makes Dictyostelium discoideum a potent model to study the function of coronins.

To study the role of coronin A in Dictyostelium discoideum, we induced the developmental cycle by starvation in tissue-culture plates containing balanced salt solution (BSS) buffer using either wild type cells or cells lacking coronin A10. We found that cells lacking coronin A were unable to form multicellular aggregates upon starvation. For an accurate quantitative assessment of this phenotype the automated live cell imaging described in this protocol is a vital tool. The defect in the initiation of the early starvation response in cells lacking coronin A can be rescued by supplying pulses of cAMP, suggesting that coronin A acts upstream of the cAMP cascade. The exogenous application of cAMP pulses to simulate the initiation of development has been utilized by several laboratories in the past8,9. However, this procedure is also known to be highly dependent on cell densities and timing. Therefore, the protocol described here aims to reduce these variabilities in order to guarantee a high degree of reproducibility. Taken together, the techniques utilized in these studies provide robust tools to investigate functions of proteins during early stages of the developmental cycle of Dictyostelium discoideum and have the potential to identify up- as well as downstream effectors of coronin A function.

Protocol

  1. Observe the early starvation response of Dictyostelium discoideum by time-lapse microscopy.
    1. Grow DH1.10 cells or corA-deficient cells in an Erlenmayer flask containing HL-5 medium (for 1 L: 5 g proteose peptone, 5 g thiotone E peptone, 10 g glucose, 5 g yeast extract, 0.35 g Na2HPO4*7H2O, 0.35 g KH2PO4, 0.05 g dihydrostreptomycin-sulfate, pH 6.6) at 22 °C in a shaking incubator with a rotation of 160 rpm. Keep cells at a density between 0.01 x 106 cells/ml and 2 x 106 cells/ml.
    2. Examine cell aggregation, by harvesting log-phase-growing DH1.10 cells21 or corA-deficient cells10 generated in the DH1.10 background, grown in shaking culture with HL-5 medium at 22 °C. To do so, take appropriate amount of cells (usually between 10 and 50 ml), centrifuge for 3 min at 400 x g and wash the cells twice in BSS (10 mM NaCl, 10 mM KCl, 2.5 mM CaCl2, pH 6.5).
    3. Count cells using a hemocytometer. Subsequently, plate cells at a density of (5, 10, 20, or 40) x 104 cells/cm2 in a 24-well plate. Allow them to adhere for 1 hr at 22 °C in BSS.
    4. Visualize aggregation by time-lapse microscopy as described before10, taking images every 135 sec. using a live cell imaging set up equipped with 5X objective and an electron-multiplying charge-coupled device camera automated by the appropriate software (see Materials Table).
  2. cAMP pulsing of Dictyostelium discoideum cells during starvation.
    1. Examine the effect of externally applied cAMP pulses on the development of DH1.10 cells21 or DH1.10 corA-deficient cells10, by harvesting cells. To do so, take appropriate amount of cells (usually between 10 and 50 ml), centrifuge for 3 min at 400 x g and wash twice in BSS.
    2. Count cells using a hemocytometer and resuspend the cells to a density of 1 x 107 cells/ml in BSS. Shake the cultures (160 rpm) at 22 °C for 2 hr before applying pulses. Add cAMP pulses using a timer controlled peristaltic pump. Program the pump to deliver a 5 sec pulse every 6.5 min of 15 µl of 50 nM cAMP (final concentration) over a period of 5 hr.
    3. Count cells using a hemocytometer. Subsequently, plate the cells at a density of (5, 10, 20, or 40) x 104 cells/cm2 in a 24-well plate. Allow to adhere for 1 hr in BSS.
    4. Visualize aggregation after 16 hr at 22 °C by bright-field microscopy using a 5X objective.
  3. Induction of Dictyostelium discoideum development through exposure to conditioned medium.
    1. Prepare fresh conditioned medium as described22. Collect log-phase DH1.10 cells21 or DH1.10 corA-deficient cells10, from shaking cultures with HL-5 medium at 22 °C using a pipette, centrifuge for 3 min at 400 x g and wash cells three times in PBM (0.02 M potassium phosphate, 10 µM CaCl2, and 1 mM MgCl2, pH 6.1).
    2. Count cells using a hemocytometer, resuspend these in PBM at a density of 1 x 107 cells/ml and shake for 20 hr at 110 rpm/22 °C.
    3. Collect conditioned medium after centrifugation at 400 × g for 3 min and clarify by centrifugation at 8,000 × g for 15 min at 4°C.
    4. Filter conditioned medium through a 0.45 µm filter (see Materials Table) and dilute threefold in PBM.
    5. Count cells using a hemocytometer and plate at a density of (5, 10, 20, or 40) x 104 cells/cm2 in a 24-well plate. Allow them to adhere for 1 hr at 22 °C.
    6. Exchange supernatant of the cells with the previously prepared conditioned medium.
    7. Visualize aggregation after 16 hr by bright-field microscopy using a 5X objective.

Results

Cells deficient in coronin A show a defect in early development (Figure 2). In the absence of coronin A cells are unable to form multicellular aggregates, which is the initial step during the developmental cycle of Dictyostelium discoideum. Therefore, coronin A appears to play a role during the early starvation response and/or cAMP signaling. Indeed, the lack of multicellular aggregate formation in the absence of coronin A is accompanied by reduced cAMP signaling...

Discussion

The coronin proteins are found in most taxa of the eukaryotic clade. Dictyostelium discoideum coronin A, the homologue of mammalian coronin 1, is involved in the early starvation response, since coronin A-deficient cells are not able to form aggregation centers during the early developmental cycle10. To be able to quantitatively and accurately assess the delay in development between the strains, a microscope live cell imaging set-up with the automated stage controller is an essential tool.

Disclosures

No conflicts of interest declared.

Acknowledgements

We thank the Dictyostelium Stock Center for strains and reagents. This study was financed by grants from the Swiss National Science Foundation and the Canton of Basel.

Materials

NameCompanyCatalog NumberComments
HL-5 media (for 1 L: 5 g proteose peptone, 5 g thiotone E peptone, 10 g glucose, 5 g yeast extract, 0.35 g Na2HPO4*2H2O, 0.35 g KH2PO4, 0.05 g dihydrostreptomycin-sulfate, pH 6.6)
Proteose peptoneBD Bioscience211693
Thiotone E peptoneBD Bioscience211684
Yeast extractBD Bioscience212750
GlucoseAppliChemA3666
Na2HPO4*2H2OFluka71643
KH2PO4AppliChemA1043
dihydrostreptomycin-sulfateSigma-AldrichD1954000
PBM (0.02 M potassium phosphate, 10 μM CaCl2, and l mM MgCl2, pH 6.1)self made
BSS (10 mM NaCl, 10 mM KCl, 2.5 mM CaCl2, pH 6.5)self made
0.45-μm Filtropure S filterSarstedt83.1826
Falcon 24-well Tissue culture plateFisher Scientific08-772-1H
Cellobserver microscopeZeisscustom built
AxioVision softwareZeiss
IPC Microprocessor–controlled dispensing pumpISMATECISM 931
Axiovert 135M microscopeZeiss491237-0001-000
Incubation ShakerInforst HT Minitron

References

  1. Weijer, C. J. Morphogenetic cell movement in Dictyostelium. Semin Cell Dev Biol. 10, 609-619 (1999).
  2. Devreotes, P. Dictyostelium discoideum: a model system for cell-cell interactions in development. Science. 245, 1054-1058 (1989).
  3. Kimmel, A. R., Firtel, R. A. cAMP signal transduction pathways regulating development of Dictyostelium discoideum. Curr Opin Genet Dev. 1, 383-390 (1991).
  4. Clarke, M., Gomer, R. H. PSF and CMF, autocrine factors that regulate gene expression during growth and early development of Dictyostelium. Experientia. 51, 1124-1134 (1995).
  5. Robertson, A., Drage, D. J., Cohen, M. H. Control of Aggregation in Dictyostelium discoideum by an External Periodic Pulse of Cyclic Adenosine Monophosphate. Science. 175, 333-335 (1972).
  6. Konijn, T. M., Chang, Y. Y., Bonner, J. T. Synthesis of cyclic AMP in Dictyostelium discoideum and Polysphondylium pallidum. Nature. 224, 1211-1212 (1969).
  7. Iranfar, N., Fuller, D., Loomis, W. F. Genome-wide expression analyses of gene regulation during early development of Dictyostelium discoideum. Eukaryot Cell. 2, 664-670 (2003).
  8. Darmon, M., Brachet, P., Da Silva, L. H. Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 72, 3163-3166 (1975).
  9. Mann, S. K., Firtel, R. A. Cyclic AMP regulation of early gene expression in Dictyostelium discoideum: mediation via the cell surface cyclic AMP receptor. Mol Cell Biol. 7, 458-469 (1987).
  10. Vinet, A. F., et al. Initiation of multicellular differentiation in Dictyostelium discoideum is regulated by coronin A. Mol Biol Cell. 25, 688-701 (2014).
  11. Eckert, C., Hammesfahr, B., Kollmar, M. A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function. BMC Evol Biol. 11, 268 (2011).
  12. Pieters, J., Muller, P., Jayachandran, R. On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol. 13, 510-518 (2013).
  13. Gatfield, J., Albrecht, I., Zanolari, B., Steinmetz, M. O., Pieters, J. Association of the Leukocyte Plasma Membrane with the Actin Cytoskeleton through Coiled Coil-mediated Trimeric Coronin 1 Molecules. Mol Biol Cell. 16, 2786-2798 (2005).
  14. Kammerer, R. A., et al. A conserved trimerization motif controls the topology of short coiled coils. Proc Natl Acad Sci U S A. 102, 13891-13896 (2005).
  15. Uetrecht, A. C., Bear, J. E. Coronins: the return of the crown. Trends Cell Biol. 16, 421-426 (2006).
  16. Jayachandran, R., et al. Coronin 1 Regulates Cognition and Behavior through Modulation of cAMP/Protein Kinase A Signaling. PLoS Biol. 12, e1001820 (2014).
  17. Suo, D., et al. Coronin-1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nat Neurosci. 17, 36-45 (2014).
  18. Mueller, P., et al. Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol. 9, 424-431 (2008).
  19. de Hostos, E. L., Bradtke, B., Lottspeich, F., Guggenheim, R., Gerisch, G. Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO J. 10, 4097-4104 (1991).
  20. Shina, M. C., et al. Redundant and unique roles of coronin proteins in Dictyostelium. Cell Mol Life Sci. 68, 303-313 (2011).
  21. Cornillon, S., et al. Phg1p is a nine-transmembrane protein superfamily member involved in dictyostelium adhesion and phagocytosis. J Biol Chem. 275, 34287-34292 (2000).
  22. Gomer, R. H., Yuen, I. S., Firtel, R. A. A secreted 80 x 10(3) Mr protein mediates sensing of cell density and the onset of development in Dictyostelium. Development. (112), 269-278 (1991).
  23. Iijima, N., Takagi, T., Maeda, Y. A proteinous factor mediating intercellular communication during the transition of Dictyostelium cells from growth to differentiation. Zoological science. 12, 61-69 (1995).
  24. Mehdy, M. C., Firtel, R. A. A secreted factor and cyclic AMP jointly regulate cell-type-specific gene expression in Dictyostelium discoideum. Mol Cell Biol. 5, 705-713 (1985).
  25. Jain, R., Yuen, I. S., Taphouse, C. R., Gomer, R. H. A density-sensing factor controls development in Dictyostelium. Genes Dev. 6, 390-400 (1992).
  26. Loomis, W. F. Cell signaling during development of Dictyostelium. Dev Biol. 391, 1-16 (2014).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Dictyostelium DiscoideumCoronin AEarly Starvation ResponseAggregation AssaysDevelopmental BiologySignaling PathwaysCell DensityCell AdherenceTime lapse MicroscopyCAMP PulsesCell CountingCell SuspensionShaking IncubatorCentrifugationHemocytometer24 well PlatePeristaltic Pump

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved