JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Optical Clearing of the Mouse Central Nervous System Using Passive CLARITY

Published: June 30th, 2016

DOI:

10.3791/54025

1Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 2W.M. Keck Science Department, Claremont McKenna, Pitzer & Scripps Colleges

Optical clearing techniques are revolutionizing the way tissues are visualized. In this report we describe modifications of the original Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) protocol that yields more consistent and less expensive results.

Traditionally, tissue visualization has required that the tissue of interest be serially sectioned and imaged, subjecting each tissue section to unique non-linear deformations, dramatically hampering one's ability to evaluate cellular morphology, distribution and connectivity in the central nervous system (CNS). However, optical clearing techniques are changing the way tissues are visualized. These approaches permit one to probe deeply into intact organ preparations, providing tremendous insight into the structural organization of tissues in health and disease. Techniques such as Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) achieve this goal by providing a matrix that binds important biomolecules while permitting light-scattering lipids to freely diffuse out. Lipid removal, followed by refractive index matching, renders the tissue transparent and readily imaged in 3 dimensions (3D). Nevertheless, the electrophoretic tissue clearing (ETC) used in the original CLARITY protocol can be challenging to implement successfully and the use of a proprietary refraction index matching solution makes it expensive to use the technique routinely. This report demonstrates the implementation of a simple and inexpensive optical clearing protocol that combines passive CLARITY for improved tissue integrity and 2,2′-thiodiethanol (TDE), a previously described refractive index matching solution.

The ability to image complete neuroanatomical structures is immensely valuable for understanding the brain in health and disease. Traditionally, 3D imaging has required tissue sectioning to provide the axial resolution and to visualize deep anatomical structures. This approach can produce high-resolution data sets, but requires sophisticated image reconstruction techniques and is very labor intensive. As a result, it has been limited to the imaging of small volumes of tissue1-3. Optical sectioning, on the other hand, is well suited for the creation of high-resolution 3D images of fluorescently labeled tissues. Since optical sectioning is inherently three di....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All experiments were performed in accordance with Institutional Animal Care and Use Committee (IACUC) guidelines. THY1-YFP, PLP-EGFP and PV-TdTomato mice were used for these experiments, but any mice expressing fluorescent proteins can be successfully cleared and imaged.

1. Tissue Preparation

Caution: Paraformaldehyde (PFA) and acrylamide are toxic and irritants. Perform experiments utilizing these reagents in a fume hood and with appropriate personal protective equip.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Visualizing the structural organization of the brain is critical for understanding how morphology and connectivity affect brain function in health and disease. Optical clearing techniques make it possible to image cell populations in 3D in intact tissues, allowing us to study morphology and connectivity cohesively.

Mice that express fluorescent proteins driven by promoters specific for sub-populations of cells permit one to teas.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Passive clearing of hydrogel embedded tissues (passive CLARITY) is a simple and inexpensive method for clearing large pieces of tissue. This approach does not require dedicated equipment and can easily be performed in a temperature-controlled shaker. Over the span of a few weeks, even large, highly myelinated tissues, such as an entire brain or spinal cord, will become transparent and suitable for microscopy. Even though this report has focused on the clearing of CNS tissues, passive CLARITY can be applied to any tissue........

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was generously supported by the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) grant 1R01NS086981 and the Conrad N. Hilton Foundation. We thank Dr. Laurent Bentolila and Dr. Matthew Schibler for their invaluable assistance with confocal microscopy. We thank those that have contributed to the CLARITY forum (http://forum.claritytechniques.org). We especially thank Dr. Karl Deisseroth for opening up his lab to teach this fascinating technique. The authors are grateful for the generous support from the Brain Mapping Medical Research Organization, Brain Mapping Support Foundation, Pierson-Lovelace Foundation, The....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
10X phosphate buffered saline (PBS) Fisher BP399-1 buffers
32% paraformaldehyde (PFA) Electron Microscopy Sciences 15714-5 perfusion and hydrogel
2,2'-thiodiethanol (TDE) Sigma-Aldrich 166782-500G refractive index matching solution
40% acrylamide Bio-Rad 161-0140 hydrogel
2% bis-acrylamide Bio-Rad 161-0142 hydrogel
VA-044 initiator Wako Pure Chemical Industries, Ltd. VA044 hydrogel
boric acid Sigma-Aldrich B7901 clearing buffer
sodium dodecyl sulfate (SDS) Fisher BP166-5 clearing buffer
sodium hydroxide Fisher 55255-1 buffers
sodium azide Sigma-Aldrich 52002-100G preservative
triton x-100 Sigma-Aldrich X100-500G buffers
heparin Sigma-Aldrich H3393-50KU perfusion
sodium nitrate Fisher BP360-500 perfusion
DAPI Molecular Probes D1306 nuclear stain
99.9% isoflurane Phoenix 57319-559-06 anesthetic
hydrocholoric acid Fisher A1445-500 buffers
glass bottom dish Willco HBSB-5040 Willco dishes
reusable adhesive Bostick 371351 Blu-Tack
silicon elastomer World Precision Instruments KWIK-CAST Kwik-Cast
lint-free wipe Kimberly-Clark 34120 KimWipe
mouse brain matrix Roboz SA-2175 sectioning tissue
matrix blades Roboz RS-9887 sectioning tissue
peristaltic pump Cole-Parmer 77122-24 pefusion
laser scanning confocal microscope Leica SP5 microscopy
imaging software Leica LAS AF microscopy

  1. Micheva, K. D., Smith, S. J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron. 55, 25-36 (2007).
  2. Kleinfeld, D., et al. Large-scale automated histology in the pursuit of connectomes. J Neurosci. 31, 16125-16138 (2011).
  3. MacKenzie-Graham, A., et al. A multimodal, multidimensional atlas of the C57BL/6J mouse brain. J Anat. 204, 93-102 (2004).
  4. Denk, W., Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron. 18, 351-357 (1997).
  5. Denk, W., et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods. 54, 151-162 (1994).
  6. Zipfel, W. R., Williams, R. M., Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 21, 1369-1377 (2003).
  7. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods. 2, 932-940 (2005).
  8. Theer, P., Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci. Vis. 23, 3139-3149 (2006).
  9. Dodt, H. U., et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods. 4, 331-336 (2007).
  10. Erturk, A., et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 7, 1983-1995 (2012).
  11. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 14, 1481-1488 (2011).
  12. Ke, M. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 16, 1154-1161 (2013).
  13. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157, 726-739 (2014).
  14. Chung, K., et al. Structural and molecular interrogation of intact biological systems. Nature. 497, 332-337 (2013).
  15. Spence, R. D., et al. Bringing CLARITY to gray matter atrophy. Neuroimage. 101, 625-632 (2014).
  16. Tomer, R., Ye, L., Hsueh, B., Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. 9, 1682-1697 (2014).
  17. Yang, B., et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 158, 945-958 (2014).
  18. Costantini, I., et al. A versatile clearing agent for multi-modal brain imaging. Sci Rep. 5, 9808 (2015).
  19. Zheng, H., Rinaman, L. Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Struct Funct. , (2015).
  20. Parra, S. G., et al. Multiphoton microscopy of cleared mouse brain expressing YFP. J Vis Exp. (67), e3848 (2012).
  21. Weinger, J. G., et al. Two-photon imaging of cellular dynamics in the mouse spinal cord. J Viz Exp. (96), e52580 (2015).
  22. Hama, H., et al. ScaleS: an optical clearing palette for biological imaging. Nat Neurosci. 18, 1518-1529 (2015).
  23. Treweek, J. B., et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc. 10, 1860-1896 (2015).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved