JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Visualizing Visual Adaptation

Published: April 24th, 2017



1Department of Psychology, University of Nevada, Reno

This article describes a novel method for simulating and studying adaptation in the visual system.

Many techniques have been developed to visualize how an image would appear to an individual with a different visual sensitivity: e.g., because of optical or age differences, or a color deficiency or disease. This protocol describes a technique for incorporating sensory adaptation into the simulations. The protocol is illustrated with the example of color vision, but is generally applicable to any form of visual adaptation. The protocol uses a simple model of human color vision based on standard and plausible assumptions about the retinal and cortical mechanisms encoding color and how these adjust their sensitivity to both the average color and range of color in the prevailing stimulus. The gains of the mechanisms are adapted so that their mean response under one context is equated for a different context. The simulations help reveal the theoretical limits of adaptation and generate "adapted images" that are optimally matched to a specific environment or observer. They also provide a common metric for exploring the effects of adaptation within different observers or different environments. Characterizing visual perception and performance with these images provides a novel tool for studying the functions and consequences of long-term adaptation in vision or other sensory systems.

What might the world look like to others, or to ourselves as we change? Answers to these questions are fundamentally important for understanding the nature and mechanisms of perception and the consequences of both normal and clinical variations in sensory coding. A wide variety of techniques and approaches have been developed to simulate how images might appear to individuals with different visual sensitivities. For example, these include simulations of the colors that can be discriminated by different types of color deficiencies1,2,3,4, the....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NOTE: The protocol illustrated uses a program that allows one to select images and then adapt them using options selected by different drop-down menus.

1. Select the Image to Adapt

  1. Click on the image and browse for the filename of the image to work with. Observe the original image in the upper left pane.

2. Specify the Stimulus and the Observer

  1. Click the "format" menu to choose how to represent the image and the observer.
  2. .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figures 2 - 4 illustrate the adaptation simulations for changes in the observer or the environment. Figure 2 compares the predicted appearance of Cezanne's Still Life with Apples for a younger and older observer who differ only in the density of the lens pigment28. The original image as seen through the younger eye (Figure 2a) appears much yellower and dimmer through the more densely pigmented lens (

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The illustrated protocol demonstrates how the effects of adaptation to a change in the environment or the observer can be portrayed in images. The form this portrayal takes will depend on the assumptions made for the model — for example, how color is encoded, and how the encoding mechanisms respond and adapt. Thus the most important step is deciding on the model for color vision — for example what the properties of the hypothesized channels are, and how they are assumed to adapt. The other important steps are.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Supported by National Institutes of Health (NIH) grant EY-10834.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Images to adapt
Programming language (e.g. Visual Basic or Matlab)
Program for processing the images
Observer spectral sensitivities (for applications involving observer-specific adaptation)
Device emmission spectra (for device-dependent applications)

  1. Vienot, F., Brettel, H., Ott, L., Ben M'Barek, A., Mollon, J. D. What do colour-blind people see?. Nature. 376, 127-128 (1995).
  2. Brettel, H., Vienot, F., Mollon, J. D. Computerized simulation of color appearance for dichromats. J Opt Soc Am A Opt Image Sci Vis. 14, 2647-2655 (1997).
  3. Flatla, D. R., Gutwin, C. So that's what you see: building understanding with personalized simulations of colour vision deficiency. Proceedings of the 14th international ACM SIGACCESS conference on Computers and accessibility. , 167-174 (2012).
  4. Machado, G. M., Oliveira, M. M., Fernandes, L. A. A physiologically-based model for simulation of color vision deficiency. IEEE Trans. Vis. Comput. Graphics. 15, 1291-1298 (2009).
  5. Teller, D. Y. First glances: the vision of infants. the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 38, 2183-2203 (1997).
  6. Ball, L. J., Pollack, R. H. Simulated aged performance on the embedded figures test. Exp. Aging Res. 15, 27-32 (1989).
  7. Sjostrom, K. P., Pollack, R. H. The effect of simulated receptor aging on two types of visual illusions. Psychon Sci. 23, 147-148 (1971).
  8. Lindsey, D. T., Brown, A. M. Color naming and the phototoxic effects of sunlight on the eye. Psychol Sci. 13, 506-512 (2002).
  9. Raj, A., Rosenholtz, R. What your design looks like to peripheral vision. Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization. , 88-92 (2010).
  10. Perry, J. S., Geisler, W. S. Gaze-contingent real-time simulation of arbitrary visual fields. International Society for Optics and Photonics: Electronic Imaging. , 57-69 (2002).
  11. Vinnikov, M., Allison, R. S., Swierad, D. Real-time simulation of visual defects with gaze-contingent display. Proceedings of the 2008 symposium on Eye tracking research. , 127-130 (2008).
  12. Hogervorst, M. A., van Damme, W. J. M. Visualizing visual impairments. Gerontechnol. 5, 208-221 (2006).
  13. Aguilar, C., Castet, E. Gaze-contingent simulation of retinopathy: some potential pitfalls and remedies. Vision res. 51, 997-1012 (2011).
  14. Rowe, M. P., Jacobs, G. H. Cone pigment polymorphism in New World monkeys: are all pigments created equal?. Visual neurosci. 21, 217-222 (2004).
  15. Rowe, M. P., Baube, C. L., Loew, E. R., Phillips, J. B. Optimal mechanisms for finding and selecting mates: how threespine stickleback (Gasterosteus aculeatus) should encode male throat colors. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190, 241-256 (2004).
  16. Melin, A. D., Kline, D. W., Hickey, C. M., Fedigan, L. M. Food search through the eyes of a monkey: a functional substitution approach for assessing the ecology of primate color vision. Vision Res. 86, 87-96 (2013).
  17. Webster, M. A. Adaptation and visual coding. J vision. 11 (5), 1-23 (2011).
  18. Webster, M. A. Visual adaptation. Annu Rev Vision Sci. 1, 547-567 (2015).
  19. Webster, M. A., Kaping, D., Mizokami, Y., Duhamel, P. Adaptation to natural facial categories. Nature. 428, 557-561 (2004).
  20. Webster, M. A., MacLeod, D. I. A. Visual adaptation and face perception. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366, 1702-1725 (2011).
  21. Schweinberger, S. R., et al. Auditory adaptation in voice perception. Curr Biol. 18, 684-688 (2008).
  22. Yovel, G., Belin, P. A unified coding strategy for processing faces and voices. Trends cognit sci. 17, 263-271 (2013).
  23. Shadmehr, R., Smith, M. A., Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu rev neurosci. 33, 89-108 (2010).
  24. Wolpert, D. M., Diedrichsen, J., Flanagan, J. R. Principles of sensorimotor learning. Nat rev Neurosci. 12, 739-751 (2011).
  25. McDermott, K., Juricevic, I., Bebis, G., Webster, M. A., Rogowitz, B. E., Pappas, T. N. Human Vision and Electronic Imaging. SPIE. 68060, (2008).
  26. Juricevic, I., Webster, M. A. Variations in normal color vision. V. Simulations of adaptation to natural color environments. Visual neurosci. 26, 133-145 (2009).
  27. Webster, M. A., Juricevic, I., McDermott, K. C. Simulations of adaptation and color appearance in observers with varying spectral sensitivity. Ophthalmic Physiol Opt. 30, 602-610 (2010).
  28. Webster, M. A. Probing the functions of contextual modulation by adapting images rather than observers. Vision res. , (2014).
  29. Webster, M. A. Human colour perception and its adaptation. Network: Computation in Neural Systems. 7, 587-634 (1996).
  30. Webster, M. A., Mollon, J. D. Colour constancy influenced by contrast adaptation. Nature. 373, 694-698 (1995).
  31. Brainard, D. H., Stockman, A., Bass, M. . OSA Handbook of Optics. , 10-11 (2010).
  32. Maloney, L. T. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J Opt Soc Am A Opt Image Sci Vis. 3, 1673-1683 (1986).
  33. Mizokami, Y., Webster, M. A. Are Gaussian spectra a viable perceptual assumption in color appearance?. J Opt Soc Am A Opt Image Sci Vis. 29, A10-A18 (2012).
  34. Chichilnisky, E. J., Wandell, B. A. Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching. Vision res. 35, 239-254 (1995).
  35. Boehm, A. E., MacLeod, D. I., Bosten, J. M. Compensation for red-green contrast loss in anomalous trichromats. J vision. 14, (2014).
  36. Regan, B. C., Mollon, J. D., Cavonius, C. R. . Colour Vision Deficiencies. Vol. XIII. , 261-270 (1997).
  37. Carandini, M., Heeger, D. J. Normalization as a canonical neural computation. Nature reviews. Neurosci. 13, 51-62 (2011).
  38. Rieke, F., Rudd, M. E. The challenges natural images pose for visual adaptation. Neuron. 64, 605-616 (2009).
  39. Hardy, J. L., Frederick, C. M., Kay, P., Werner, J. S. Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language. Psychol sci. 16, 321-327 (2005).
  40. Webster, M. A., Mollon, J. D. Adaptation and the color statistics of natural images. Vision res. 37, 3283-3298 (1997).
  41. Webster, M. A., Mizokami, Y., Webster, S. M. Seasonal variations in the color statistics of natural images. Network. 18, 213-233 (2007).
  42. Sagi, D. Perceptual learning in Vision Research. Vision res. , (2011).
  43. Lu, Z. L., Yu, C., Watanabe, T., Sagi, D., Levi, D. Perceptual learning: functions, mechanisms, and applications. Vision res. 50, 365-367 (2009).
  44. Bavelier, D., Green, C. S., Pouget, A., Schrater, P. Brain plasticity through the life span: learning to learn and action video games. Annu rev neurosci. 35, 391-416 (2012).
  45. Kompaniez, E., Abbey, C. K., Boone, J. M., Webster, M. A. Adaptation aftereffects in the perception of radiological images. PloS one. 8, e76175 (2013).
  46. Ross, H. . Behavior and Perception in Strange Environments. , (1974).
  47. Armann, R., Jeffery, L., Calder, A. J., Rhodes, G. Race-specific norms for coding face identity and a functional role for norms. J vision. 11, 9 (2011).
  48. Oruc, I., Barton, J. J. Adaptation improves discrimination of face identity. Proc. R. Soc. A. 278, 2591-2597 (2011).
  49. Kording, K. P., Tenenbaum, J. B., Shadmehr, R. The dynamics of memory as a consequence of optimal adaptation to a changing body. Nature neurosci. 10, 779-786 (2007).
  50. Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M., Williams, D. R. Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron. 35, 783-792 (2002).
  51. Delahunt, P. B., Webster, M. A., Ma, L., Werner, J. S. Long-term renormalization of chromatic mechanisms following cataract surgery. Visual neurosci. 21, 301-307 (2004).
  52. Bao, M., Engel, S. A. Distinct mechanism for long-term contrast adaptation. Proc Natl Acad Sci USA. 109, 5898-5903 (2012).
  53. Kwon, M., Legge, G. E., Fang, F., Cheong, A. M., He, S. Adaptive changes in visual cortex following prolonged contrast reduction. J vision. 9 (2), 1-16 (2009).
  54. Webster, M. A., Elliott, A., Fairchild, M. D., Franklin, A. . Handbook of Color Psychology. , 197-215 (2015).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved