JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

An example of adenoviral gene therapy in the human diabetic organ-cultured corneas is presented towards the normalization of delayed wound healing and markedly reduced epithelial stem cell marker expression in these corneas. It also describes the optimization of this process in stem cell-enriched limbal epithelial cultures.

Abstract

The goal of this protocol is to describe molecular alterations in human diabetic corneas and demonstrate how they can be alleviated by adenoviral gene therapy in organ-cultured corneas. The diabetic corneal disease is a complication of diabetes with frequent abnormalities of corneal nerves and epithelial wound healing. We have also documented significantly altered expression of several putative epithelial stem cell markers in human diabetic corneas. To alleviate these changes, adenoviral gene therapy was successfully implemented using the upregulation of c-met proto-oncogene expression and/or the downregulation of proteinases matrix metalloproteinase-10 (MMP-10) and cathepsin F. This therapy accelerated wound healing in diabetic corneas even when only the limbal stem cell compartment was transduced. The best results were obtained with combined treatment. For possible patient transplantation of normalized stem cells, an example is also presented of the optimization of gene transduction in stem cell-enriched cultures using polycationic enhancers. This approach may be useful not only for the selected genes but also for the other mediators of corneal epithelial wound healing and stem cell function.

Introduction

The diabetic corneal disease mainly results in degenerative epithelial (keratopathy) and nerve (neuropathy) changes. It is often manifested by the abnormalities of epithelial wound healing and corneal nerve reduction1-4. An estimated 60-70% diabetics have various corneal problems1,3. Our studies have identified several marker proteins with altered expression in human diabetic corneas including the downregulation of c-met proto-oncogene (hepatocyte growth factor receptor) and the upregulation of matrix metalloproteinase-10 (MMP-10) and cathepsin F5, 6. We have also documented significantly decreased expression of several putative epithelial stem cell markers in the human diabetic corneas.

In the previous studies we have developed an adenoviral-based gene therapy to normalize the levels of diabetes-altered markers using human diabetic corneal organ culture system, which shows slow wound healing, diabetic marker changes, and stem cell marker expression reduction similar to the ex vivo corneas7,8. This persistence of changes appears to be due to the existence of epigenetic metabolic memory9. This culture system was further used for gene therapy. The targets for this therapy were chosen from markers with either reduced expression in diabetic corneas (c-met proto-oncogene), or increased expression (MMP-10 and cathepsin F).

The adenoviral (AV) therapy was used in the whole organ-cultured corneas or the corneoscleral peripheral limbal compartment only. This compartment harbors epithelial stem cells that renew the corneal epithelium and actively participate in the wound healing4,10-15. Here, protocols are provided for normal and diabetic human corneal organ culture, epithelial wound healing, isolation and characterization of stem cell-enriched limbal cell cultures, and adenoviral cell and corneal transduction. Our results show the feasibility of this therapy for normalizing marker expression and wound healing in diabetic corneas for possible future transplantation. They also suggest that the combination therapy is the most efficacious way to restore normal marker pattern and epithelial healing in the diabetic cornea16-18.

Access restricted. Please log in or start a trial to view this content.

Protocol

National Disease Research Interchange (NDRI, Philadelphia, PA) supplied consented post-mortem healthy and diabetic human eyes and corneas. NDRI's human tissue collection protocol is approved by the managerial committee and subject to National Institutes of Health oversight. This research has been conducted under the approved Cedars-Sinai Medical Center Institutional Review Board (IRB) exempt protocol EX-1055. Collaborating corneal surgeons, Drs. E. Maguen and Y. Rabinowitz, supplied discard corneoscleral rims for isolation of stem cell-enriched corneal epithelial cultures. This research has been conducted under the approved IRB protocol Pro00019393.

1. Human Corneal Organ Culture

Note: Normal and diabetic corneas or whole eyes are received in chilled corneal storage medium (e.g., Optisol GS) within 48 hr after death from the national supplier NDRI.

  1. Remove the corneas from storage container with forceps and wash them twice in the antibiotic-antimycotic (ABAM) mixture. In case of whole eyes, cut the corneas out from the globes with curved scissors. Leave at least a 5 mm conjunctival rim and also wash the corneas in ABAM.
  2. Prepare the mixture to be placed in the corneal concavity. It consists of serum-free minimum essential medium (MEM) containing ABAM, 1 mg/ml calf skin collagen (made from a stock solution of 10 mg/ml in 0.1 N acetic acid), 1% agar, and insulin-transferrin-selenite supplement7.
  3. Microwave this mixture to boiling for sterilization and agar dissolution. It may take up to 1 min for everything to dissolve. Leave the tube cap partially open because the mixture overflows easily when it boils. For this reason, several boiling cycles may be needed, each for 10-15 sec. Cool down the mixture to 37-39 °C.
  4. Place the corneas epithelial side down in sterile 60 mm dishes. Fill the corneal concavity with approximately 0.5 ml of the mixture described in 1.2. The mixture solidifies on the corneas within 2 min.
  5. Place the corneas agar side down in sterile 60-mm dishes and add the full medium containing MEM with ABAM, and insulin-transferrin-selenite supplement7 (37 °C) to keep its level approximately at the limbus for air-liquid interface culture. The medium volume is 7-8 ml per dish.
  6. Place the dishes with the corneas into a 5% CO2 incubator humidified with a water pan (this way, humidity level is kept at or above 95%) at 35 °C (normal corneal temperature). Add 100 μl medium (two drops) daily on the epithelium to moisten the corneas.
  7. Monitor the corneal morphology and the epithelial cell viability microscopically under transmitted light using a standard microscope with a 4X objective. Do so once a day.
  8. Change the medium every three days. The corneas can be cultured for at least three weeks. For the gene therapy experiments, culture the corneas for 3-5 days, then transduce with genes of interest (4.1-4.4), leave for another 3-5 days depending on the transgene and subject to the wound healing protocol (2.1-2.4).

2. Epithelial Wound Healing

Note: In the diabetic corneas, the epithelial debridement by mechanical scraping is not feasible because the fragile epithelial basement membrane is detached in the process, which does not happen in the normal corneas. Thus, to keep the normal and diabetic corneas under similar conditions of wound healing, chemical removal of the epithelium with n-heptanol is used19. This procedure removes the epithelium but leaves behind an intact basement membrane in both the normal and diabetic corneas.

  1. To perform central epithelial debridement20, place a 5 mm filter paper disc soaked in n-heptanol on the central corneal anterior surface for 75 sec.
  2. Remove the filter and wash the corneas in full medium. Fill the concavity with 0.5 ml agar-collagen mixture and culture as in 1.4. After debridement, the epithelial cells usually die and slough off leaving behind microscopically intact basement membrane7.
  3. Use 8.5 mm disks to create larger epithelial wounds in the experiments with only limbal gene therapy. This will ensure the involvement of limbal stem cells in the healing process.
  4. Monitor the corneal healing microscopically. Make photographs at 4X and 10X every day until the epithelial defect is completely healed. The healing process can take from 2 to 15 days depending on the state (normal or diabetic) and wound size.
    Note: During the healing process, black spider-like cells are observed at the top focal plane. These cells are apoptotic stromal keratocytes that died after the epithelial removal4. The healing is determined to be complete when these dead cells are overgrown by the healing epithelium and are no longer visible (Figure 2, inset).
  5. After healing completion, cut the corneas in half, embed them in O.C.T. compound and process for indirect immunofluorescence on cryostat sections or for Western blots16,21.

3. Isolation of Limbal Cells and Maintenance of Stem Cell-enriched Cultures

Note: Prepare the primary limbal epithelial stem cell (LESC)-enriched cultures from the corneoscleral rims. The rims coming from healthy donors and discarded after corneal transplantations are received from the collaborating surgeons in the standard corneal storage medium (e.g., Optisol). Otherwise, the LESC-enriched cultures can be obtained from the rims excised from normal and diabetic whole corneas or globes received from NDRI in the corneal storage medium.

  1. If the whole corneas or globes are used, first isolate the limbal areas. To do this, place the cornea on a sterile plastic dish with epithelial side up and remove the central area with a 9-mm trephine (circular corneal knife). Discard this central part. Then excise the limbal zone using a 13 mm trephine and discard the outer conjunctival part. To isolate cells use the bagel-like limbal rim. Before cell isolation, remove the endothelial cells and adhering remnants of the iris from the inner side of the cornea opposite to the surface epithelium with a sterile cotton swab.
  2. Isolate limbal cell sheets using dispase treatment. Incubate each corneoscleral rim with 2.4 U/ml dispase II in 1.5 ml keratinocyte serum-free medium (KSFM) supplemented with 10% fetal bovine serum (FBS) at 37 °C for 2 hr22.
  3. Gently ease the limbal epithelial cell sheet off the rim under a dissecting stereo microscope with a forceps and dissociate the cells in 1 ml of 0.25% trypsin - 0.02% EDTA solution for 30 min at room temperature.
  4. Wash the cells in 10 ml of medium (e.g., Epilife) and pellet them at 300 x g in a table-top centrifuge for 5 min at room temperature.
  5. Resuspend the cells in culture medium: medium with N2, B27 and human keratinocyte growth supplements, and 10 ng/ml epidermal growth factor (EGF).
  6. Seed the cells at 3,000-5,000 cells/ml in flasks or 60 mm dishes coated with a mixture of human basement membrane proteins including fibronectin, type IV collagen, and laminin (FCL), at 0.5-1 μg/cm2, in the KSFM medium.
  7. Culture the cells in a humidified (95% or higher humidity) CO2 incubator at 37 °C until they form fully confluent monolayers. This may take 1-2 weeks.
    Note: Regularly confirm the cell identity by positive immunocytochemical staining for putative LESC markers including PAX6, keratin (K) 14, K15, K17, and ΔNp63α. The staining details including the primary antibodies have been published8,16-18,22.
  8. To passage the confluent cells, treat them with 1 ml 0.05% trypsin solution (1:5 dilution of the 0.25% solution) for 10 min at 37 °C. Add 5 ml soybean trypsin inhibitor solution (10 mg/ml) diluted 1:4 in medium, and centrifuge the cells as in 3.5.
  9. Wash the cell pellet in 3 ml of diluted soybean trypsin inhibitor solution. Plate the cells onto FCL-coated (see 3.7) dishes or glass chamber slides at 2 x 104 cells/ml.

4. Adenoviral Transduction of Organ-cultured Corneas

Note: The recombinant adenoviruses (AV) include AV-vector (no gene inserted), AV-cmet (with the c-met gene open reading frame), AV-shM10 (with shRNA to MMP-10), and AV-shCF (with shRNA to cathepsin F). They are E1/E3-deleted type 5 AV expressing genes under the control of the major immediate early cytomegalovirus promoter. The AV-cmet viruses are generated using AV vector pAd/CMV/V5-DEST16. The AV-shRNA viruses are custom generated by subcloning of shRNA sequences along with hH1 promoter and GFP tag sequence from iLenti-EGFP vector into a replication-incompetent (-E1/-E3) human AV type 5 genome using Adeno-4 expression system17.

  1. Transduce one organ-cultured cornea of each pair with AV-vector and another cornea, with a gene expression-modulating AV. Use the AV-cmet at 0.8 to 1.25 x 108 plaque-forming units (pfu) per cornea in culture medium for 48 hr at 37 °C keeping the corneas under the medium surface each in a well of a 24-well dish. Use the AV-shRNA viruses at 1-2 x 108 pfu per cornea.
  2. Use the viruses for transduction in full medium supplemented with 75 μg/ml sildenafil citrate. This reagent activates the caveolin transport facilitating viral uptake by the epithelial cells21. Due to short half-life of sildenafil in aqueous solutions, re-add the same amount to the medium 4-5 hr later. Standard treatment is for 48 hr.
  3. Transfer corneas to new dishes with a round end sterile spatula and culture in the medium without AV keeping the medium level at the limbus. After the additional 4-8 days at the liquid-air interface, process the AV-treated corneas for various analyses or test for epithelial wound healing (see above). Routinely moisten the corneas during culture by adding 100 μl medium (two drops) on top of the cornea.
  4. For the transduction of the limbal cells only, incubate the viruses with the corneas at the air-liquid interface with medium level at the limbus, to avoid transduction of the central epithelium.

5. Adenoviral Transduction of Cultured Limbal Cells

  1. Maintain the LESC-enriched cultures in the medium with 10 ng/ml EGF (see 3.5) on plastic dishes coated with the FCL mixture at 0.5 μg/cm2.
  2. Transduce cultured cells that have reached 70-80% confluency with the AV harboring the green fluorescent protein gene (AV-GFP) or the AV-scrambled shRNA-GFP in a range of multiplicity of infection (MOI: 1-300 pfu/cell), in the medium with 2 ng/ml EGF. Perform the transduction for 4 hr at 37 °C in a minimal volume (0.2 ml) followed by 20 hr in 0.5 ml medium. The caveolin transport activator sildenafil is not needed for the cell culture transduction.
  3. Use one of the following reagents that facilitate the AV binding to the cell surface to enhance the AV transduction efficiency: either polycations (1 μg/ml poly-L-lysine or 5 μg/ml polybrene), or 6 μl/ml transduction reagent (e.g., ViraDuctin), or 20 μl/ml transduction enhancer (e.g., ibiBoost).
  4. After replacing the medium for the one without the AV, incubate cultured cells for 4 days, in the humidified CO2 incubator and evaluate GFP expression level using an inverted fluorescent microscope.
  5. Use the scratch wound healing assay to evaluate cell migration in the AV-transduced cultures. Grow the cells in the multiwell chamber slides. Make the wounds in a monolayer by scratching cells in a straight linear motion with a 200 μl pipette tip. After wounding, change the medium for a fresh one to remove the detached cells.
  6. Photograph the wounds every day with a digital camera attached to an inverted microscope at 4X magnification. Record the time when the healing is complete (the wound edges come into contact along the entire wound).

Access restricted. Please log in or start a trial to view this content.

Results

We have shown previously that in the corneal organ cultures, the differences in the expression of diabetic markers (e.g., basement membrane proteins and integrin α3β1) and wound healing between the normal and diabetic corneas are preserved. This culture system was subjected to the gene therapy aimed at normalizing the levels of diabetes-altered markers, c-met, MMP-10, and cathepsin F.

When the whole corneal ep...

Access restricted. Please log in or start a trial to view this content.

Discussion

The cornea appears to be an ideal tissue for gene therapy due to its surface location where the gene delivery, as well as the evaluation of efficacy and side effects, are easy. However, a clinical translation of this powerful approach is still slow due to scarce information on genetic causes of the corneal diseases and the gene therapy targets24. Diabetic complications including corneal alterations may be largely epigenetic in nature, which translates into metabolic memory9. For this reason, the dia...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors declare no financial interests.

Acknowledgements

We gratefully acknowledge financial support by NIH/NEI R01 EY13431 (AVL), CTSI grant UL 1RR033176 (AVL), and grants from the Regenerative Medicine Institute, Cedars-Cedars Medical Center.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
minimum essential mediumThermo Fisher Scientific11095-080
Optisol-GS Bausch & Lomb50006-OPT
ABAM antibiotic-antimycotic mixtureThermo Fisher Scientific15240062
calf skin collagen Sigma-Aldrich C9791
agar, tissue culture gradeSigma-Aldrich A1296
n-heptanolSigma-Aldrich 72954-5ML-F
O.C.T. compound VWR International25608-930
Dispase II Roche Applied Science4942078001
keratinocyte serum-free medium (KSFM) Thermo Fisher Scientific17005042
EpiLife medium with calciumThermo Fisher ScientificMEPI500CA
N2 medium supplement, 100xThermo Fisher Scientific17502-048
B27 medium supplement, 50xThermo Fisher Scientific17504-044
human keratinocyte growth supplement, 100xThermo Fisher ScientificS-001-5
trypsin 0.25% - EDTA 0.02% with phenol redThermo Fisher Scientific25200056
trypsin 0.25% with phenol redThermo Fisher Scientific15050065
soybean trypsin inhibitor Sigma-Aldrich T6414
fetal bovine serumThermo Fisher Scientific26140079
insulin-transferrin-selenite supplement (ITS)Sigma-Aldrich I3146-5ML
antibody to keratin 14Santa Cruz Biotechnologysc-53253
antibody to keratin 15Santa Cruz Biotechnologysc-47697
antibody to keratin 17Santa Cruz BiotechnologySC-58726
antibody to ΔNp63αSanta Cruz Biotechnologysc-8609
antibody to PAX6BioLegendPRB-278P-100
antibody to nidogen-1R&D SystemsMAB2570
antibody to integrin α3β1EMD MilliporeMAB1992
human fibronectinBD Biosciences354008
human lamininSigma-Aldrich L4445
human type IV collagenSigma-Aldrich C6745-1ML
adenovirus expressing MMP-10 shRNACapital BioSciencescustom made
adenovirus expressing cathepsin F shRNACapital BioSciencescustom made
adenovirus expressing scrambled shRNA and GFPCapital BioSciencescustom made
adenovirus expressing c-metOriGene (plasmid)SC323278
adenovirus expressing GFPKeraFASTFVQ002
sildenafil citrate, 25 mgPfizerfrom pharmacy
epidermal growth factor Thermo Fisher ScientificPHG0311
poly-L-lysineSigma-Aldrich P4707
polybreneSigma-Aldrich 107689-10G
ViraDuctinCell BiolabsAD-200
ibiBoostibidi, Germany50301
phosphate buffered saline (PBS)Thermo Fisher Scientific10010049
Corning round end spatula Dow Corning3005
60 mm Petri dishesThermo Fisher Scientific174888
Nunc Lab-Tek II multiwell chamber slides Sigma-AldrichC6807
200 μl pipet tipsBioexpressP-1233-200other suppliers available
inverted microscope NikonDiaphotother suppliers/models available
humidified CO2 incubator Thermo Fisher Scientific370 (Steri-Cycle)other suppliers/models available
fluorescent microscopeOlympus, JapanBX-40other suppliers/models available
dissecting stereo microscopeLeica, GermanyS4 Eother suppliers/models available

References

  1. Bikbova, G., Oshitari, T., Tawada, A., Yamamoto, S. Corneal changes in diabetes mellitus. Curr Diabetes Rev. 8 (4), 294-302 (2012).
  2. Calvo-Maroto, A. M., Perez-Cambrodí, R. J., Albarán-Diego, C., Pons, A., Cerviño, A. Optical quality of the diabetic eye: a review. Eye (Lond). 28 (11), 1271-1280 (2014).
  3. Tripathy, K., Chawla, R., Sharma, Y. R., Venkatesh, P., Vohra, R. Corneal changes in diabetes mellitus. DOS Times. 20 (5), 55-58 (2015).
  4. Ljubimov, A. V., Saghizadeh, M. Progress in corneal wound healing. Prog Retin Eye Res. 49, 17-45 (2015).
  5. Saghizadeh, M., et al. Overexpression of matrix metalloproteinase-10 and matrix metalloproteinase-3 in human diabetic corneas: a possible mechanism of basement membrane and integrin alterations. Am J Pathol. 158 (2), 723-734 (2001).
  6. Saghizadeh, M., et al. Proteinase and growth factor alterations revealed by gene microarray analysis of human diabetic corneas. Invest Ophthalmol Vis Sci. 46 (10), 3604-3615 (2005).
  7. Kabosova, A., Kramerov, A. A., Aoki, A. M., Murphy, G., Zieske, J. D., Ljubimov, A. V. Human diabetic corneas preserve wound healing, basement membrane, integrin and MMP-10 differences from normal corneas in organ culture. Exp Eye Res. 77 (2), 211-217 (2003).
  8. Saghizadeh, M., et al. Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Mol Vis. 17, 2177-2190 (2011).
  9. Kowluru, R. A., Kowluru, A., Mishra, M., Kumar, B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 48 (Sep), 40-61 (2015).
  10. Lehrer, M. S., Sun, T. T., Lavker, R. M. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci. 111 (Pt 19), 2867-2875 (1998).
  11. Lu, L., Reinach, P., Kao, W. W. Corneal epithelial wound healing. Exp Biol Med. 226 (7), 653-664 (2001).
  12. Rama, P., et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 363 (2), 147-155 (2010).
  13. Di Girolamo, N., et al. Tracing the fate of limbal epithelial progenitor cells in the murine cornea. Stem Cells. 48 (1), 203-225 (2014).
  14. Amitai-Lange, A., et al. Lineage tracing of stem and progenitor cells of the murine corneal epithelium. Stem Cells. 33 (1), 230-239 (2015).
  15. Di Girolamo, N. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells. Prog Retin Eye Res. 48 (Sep), 203-225 (2015).
  16. Saghizadeh, M., Kramerov, A. A., Yu, F. S., Castro, M. G., Ljubimov, A. V. Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-met gene. Invest Ophthalmol Vis Sci. 51 (4), 1970-1980 (2010).
  17. Saghizadeh, M., et al. Enhanced wound healing, kinase and stem cell marker expression in diabetic organ-cultured human corneas upon MMP-10 and cathepsin F gene silencing. Invest Ophthalmol Vis Sci. 54 (13), 8172-8180 (2013).
  18. Saghizadeh, M., Dib, C. M., Brunken, W. J., Ljubimov, A. V. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res. 129 (Dec), 66-73 (2014).
  19. Hatchell, D. L., et al. Damage to the epithelial basement membrane in the corneas of diabetic rabbits. Arch Ophthalmol. 101 (3), 469-471 (1983).
  20. Chung, J. H., Kim, W. K., Lee, J. S., Pae, Y. S., Kim, H. J. Effect of topical Na-hyaluronan on hemidesmosome formation in n-heptanol-induced corneal injury. Ophthalmic Res. 30 (2), 96-100 (1998).
  21. Saghizadeh, M., et al. Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes. Brain Res Bull. 81 (2-3), 262-272 (2010).
  22. Sareen, D., et al. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med. 3 (9), 1002-1012 (2014).
  23. Funari, V. A., et al. Differentially expressed wound healing-related microRNAs in the human diabetic cornea. PLoS One. 8 (12), e84425(2013).
  24. Mohan, R. R., Rodier, J. T., Sharma, A. Corneal gene therapy: basic science and translational perspective. Ocul Surf. 11 (3), 150-164 (2013).
  25. Liu, J., et al. Different tropism of adenoviruses and adeno-associated viruses to corneal cells: implications for corneal gene therapy. Mol Vis. 14, 2087-2096 (2008).
  26. Thomas, C. E., Ehrhardt, A., Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 4 (5), 346-358 (2003).
  27. Sharma, G. D., He, J., Bazan, H. E. P38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem. 278 (24), 21989-21997 (2003).
  28. Saika, S., et al. Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium. Invest Ophthalmol Vis Sci. 45 (1), 100-109 (2004).
  29. Xu, K. P., Li, Y., Ljubimov, A. V., Yu, F. S. High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes. 58 (5), 1077-1085 (2009).
  30. Xu, K., Yu, F. S. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci. 52 (6), 3301-3308 (2011).
  31. Takamura, Y., et al. Aldose reductase inhibitor counteracts the enhanced expression of matrix metalloproteinase-10 and improves corneal wound healing in galactose-fed rats. Mol Vis. 19, 2477-2486 (2013).
  32. Byun, Y. S., Kang, B., Yoo, Y. S., Joo, C. K. Poly(ADP-ribose) polymerase inhibition improves corneal epithelial innervation and wound healing in diabetic rats. Invest Ophthalmol Vis Sci. 56 (3), 1948-1955 (2015).
  33. Deng, S. X., et al. Characterization of limbal stem cell deficiency by in vivo laser scanning confocal microscopy: a microstructural approach. Arch Ophthalmol. 130 (4), 440-445 (2012).
  34. Lagali, N., et al. In vivo morphology of the limbal palisades of Vogt correlates with progressive stem cell deficiency in aniridia-related keratopathy. Invest Ophthalmol Vis Sci. 54 (8), 5333-5342 (2013).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Adenoviral Gene TherapyDiabetic KeratopathyWound HealingStem Cell Marker ExpressionHuman Organ cultured CorneasLimbal Epithelial CellsEpithelial Wound HealingCorneal Stem Cell FunctionCorneal DiseasesStem Cell DysfunctionEpithelial DebridementCorneal HealingApoptotic Stromal Keratocytes

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved