A subscription to JoVE is required to view this content. Sign in or start your free trial.
Accurate identification and location of epithelial cells along the intestinal mucosal lining are essential to define different cell lineages. Proper imaging of intestinal tissues is crucial for identification of protein expression patterns with maximum resolution. This study aims to delineate the optimal methods and conditions for processing mouse intestinal tissues.
Understanding the role of factors that regulate intestinal epithelial homeostasis and response to injury and regeneration is important. The current literature describes several different methodological approaches to obtain images of intestinal tissues for data validation. In this paper, we delineate a common protocol relating to the derivation and processing of mouse intestinal tissues. Proper fixation of intestinal tissues and Swiss-roll techniques that enhance intestinal epithelial morphology are discussed. Postresection processing and reorientation of embedded intestinal tissues are critical in obtaining paraffin-embedded blocks that display intact intestinal structural features after sectioning. The Swiss-rolling technique helps in histological assessment of the complete intestinal or colonic sections examined. An ability to differentiate intestinal structural features can be vital in quantitative measurements of intestinal inflammation and tumorigenesis along the entire length. Finally, paraffin-embedded sections are ideal for robust processing using both immunohistochemical and immunofluorescent detection methods. Nonfluorescent immunohistochemical sections provide a vibrant image of the tissue detailing different cellular structural features but do not provide flexibility for intracellular co-localization experiments. Multiple fluorescent channels can be appropriately utilized with immunofluorescent detection for co-localization experiments, lending support to mechanistic studies.
The mammalian intestinal epithelium comprises a single layer of columnar cells. In the small intestine, the proliferative cells are confined to the crypts while differentiated cells occupy the villus region. However, because there are no villi in the large bowel, the proliferative cells are localized to the bottom of the crypts and differentiated cells occupy the upper region of the crypts. The intestinal epithelium undergoes rapid replenishment (about 3 - 5 days) that is driven by continuous division of the proliferative cells within the crypts. The proliferative cells of the crypts are not a homogeneous population and are further subdivided into stem cells and trans....
1. Mice
The Swiss rolling technique in combination with immunohistochemical staining allows for comprehensive analysis of small or large intestinal tissue. The example of H&E staining of a large bowel of a C57BL/6 mouse (Figure 1) is an illustration of the feasibility and the effectiveness of this technique. As shown in Figure 1, the image is able to capture all portions of the colon: proximal, middle, and distal. Thus, it allows for comprehensive histologica.......
The Swiss rolling technique is a powerful method for preparing intestinal tissue for histological and morphological assessment on a large scale. In contrast to the previously described Swiss-rolling technique, which was originally developed for preparation of frozen sections18,19, the procedure presented here allows prompt intestinal tissue preparation and fixation for formalin fixation and paraffin embedding (FFPE). Compared to frozen tissue, FFPE tissue has much longer shelf life and is the preferred type of.......
We would like to thank Ainara Ruiz de Sabando for providing H&E images. This work was supported by grants from the National Institutes of Health (DK052230, DK093680 and CA172113) awarded to Dr. Vincent W. Yang.
....Name | Company | Catalog Number | Comments |
Stainless Steel Dissecting Kits | VWR | 25640-002 | |
Decloaking Chamber | Biocare Medical | DC2012 | |
Syringe 10ml | VWR | 89215-218 | |
Swingsette Tissue embedding/processing cassette with lid | Simport | M515 | |
Superfrost Plus Slides [size: 25x75x1mm] | VWR | 48311-703 | |
Manual Slide Staining Set | Tissue-Tek/Sakura | 4451 | |
Staining Dish Green | Tissue-Tek/Sakura | 4456 | |
Staining Dish White | Tissue-Tek/Sakura | 4457 | |
24-Slide Slide Holder with Detachable Handle | Tissue-Tek/Sakura | 4465 | |
Oven | Thermo Scientific | 6243 | for baking slides at 65 degree |
Dissection microscope | Zeiss | Stemi 2000C | |
Fluorescence Microscope | Nikon | Eclipse 90i | Bright and fluoerescent light, with objectives: 10x, 20x |
PAP Pen Super-Liquid Blocker Mini | Fisher Scientific | DAI-PAP-S-M | |
Ethanol 200 proof | AAPR | 111000200 | |
Methanol | VWR | BDH1135-4LP | |
Glacial acetic acid | AAPR | 281000ACS | |
Xylene | Fisher Scientific | X5P-1GAL | |
Hydrogen peroxide 25% solution in water | ACROS | 202465000 | |
10% bufered formalin | Fisher Scientific | 22-026-213 | |
Bovine serum fraction V, heat shock | Roche | 3116956001 | |
Tween 20 | Sigma Aldrich | P7949 | |
Sodium citrate | Fisher Scientific | S279 | |
Gavage needle | VWR | 20068-624 | |
Rabbit anti Klf5 antibody | Santa Cruz Biotechnology | sc-22797 | Dilution 1: 150 |
Chicken anti EGFP antibody | Millipore | AB16901 | Dilution 1: 500 |
Rabbit anti Ki67 antibody | Biocare Medical | CRM325B | Dilution 1: 500 |
Mach3 rabbit AP polymer detection kit | Biocare Medical | M3R533L | |
Warp red chromogen kit | Biocare Medical | WR806 H | |
Lgr5-EGFP/CreERT2 mice | Jackson labs | 008875 | |
Automated processor | Leica | Leica TP1020 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved