JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Continuous IV Infusion is the Choice Treatment Route for Arginine-vasopressin Receptor Blocker Conivaptan in Mice to Study Stroke-evoked Brain Edema

Published: September 1st, 2016



1Neurotrauma Research, Swedish Medical Center, 2Neurosurgery, Colorado Brain and Spine Institute

Our studies have revealed that the beneficial effects of conivaptan are dependent on the method of delivery after experimental stroke in mice. We have developed a research protocol for delivery of the receptor blocker via IV catheter on stroke-evoked brain edema formation in mice.

Stroke is one of the major causes of morbidity and mortality in the world. Stroke is complicated by brain edema and other pathophysiological events. Among the most important players in the development and evolution of stroke-evoked brain edema is the hormone arginine-vasopressin and its receptors, V1a and V2. Recently, the V1a and V2 receptor blocker conivaptan has been attracting attention as a potential drug to reduce brain edema after stroke. However, animal models which involve conivaptan applications in stroke research need to be modified based on feasible routes of administration. Here the outcomes of 48 hr continuous intravenous (IV) are compared with intraperitoneal (IP) conivaptan treatments after experimental stroke in mice. We developed a protocol in which middle cerebral artery occlusion was combined with catheter installation into the jugular vein for IV treatment of conivaptan (0.2 mg) or vehicle. Different cohorts of animals were treated with 0.2 mg bolus of conivaptan or vehicle IP daily. Experimental stroke-evoked brain edema was evaluated in mice after continuous IV and IP treatments. Comparison of the results revealed that the continuous IV administration of conivaptan alleviates post-ischemic brain edema in mice, unlike the IP administration of conivaptan. We conclude that our model can be used for future studies of conivaptan applications in the context of stroke and brain edema.

Stroke continues to be an enormous burden for patients and clinicians. Animal stroke models have been used in the laboratory setting for nearly two decades.1 Nevertheless, experimental treatments that work in animals often fail in humans.2 This discrepancy in treatment outcomes may be due to various factors, such as administration routes for drugs used in animal research, drug metabolism and elimination rate, and many other aspects. One of the major complications of stroke, brain edema, is a focus of current research in neuroscience. Mechanisms of brain edema formation involve disturbances in water and electrolyte balance triggered by the arginin....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Experiments were carried out in accordance with the guidelines of the National Institutes of Health for the care and use of animals in research and were approved by the Swedish Medical Center Animal Care and Use Committee. All procedures were performed with appropriate aseptic techniques. Experimental animals utilized for the study were male, 3 months old, wild type C57 mice with body weight from 25 to 27 g.

1. In Vivo Stroke Induction

  1. Pre-coat the Filament with Dental Res.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Body temperature of the animals was within the physiological range and stable throughout the surgical procedure of stroke induction. Two mice that exhibited NDS lower than 2 immediately after MCAO were excluded from the study.

MCAO in mice produces infarct volume in the ipsilateral hemisphere at 48 hr. Evaluation of the TTC-stained slices shows that about 50% of the hemisphere is affected by infarct after MCAO (Figure 1D.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study has important value for preclinical stroke research. This study reveals that continuous IV infusion of conivaptan (0.2 mg/day) after experimental stroke in mice efficiently reduces brain edema after 48 hr of treatment. The effect of IP injection of the same dose of conivaptan on brain edema was also investigated. Conivaptan treatment by both IV and IP routes produces aquaresis in mice as indicated by: 1) increase in plasma osmolality slightly above physiological levels; and 2) decrease in urine osmolality due .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Swedish Medical Center for providing the funding and facilities. We also thank Craig Hospital for the generous use of laboratory space.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Heated Pad K&H Manufacturing Inc 1060
Temperature Monitor with Rectal Probe Physitemp 7029
Silk Suture Spool, 6-0 Surgical Specialties Corporation SP114
Silk Suture on a Needle, 3-0 Ethicon 1684G
Nylon Suture, 7-0 Ethicon 1696G
Dental Resin Polysiloxane with Hardener Heraeus Kulzer 65817930
Microinfusion IV Pump Kent Scietific GT0897
Swivel 22GA Instech 375/22PS
Laboratory Tubing, 0.94 x 0.51 mm Dow Corning 508-002
Laboratory Tubing, 3.18 x 1.98 mm Dow Corning 508-009

  1. Gueniau, C., Oberlander, C. The kappa opioid agonist niravoline decreases brain edema in the mouse middle cerebral artery occlusion model of stroke. J Pharmacol Exp Ther. 282, 1-6 (1997).
  2. Krafft, P. R., et al. Etiology of stroke and choice of models. Int J Stroke. 7, 398-406 (2012).
  3. Vakili, A., Kataoka, H., Plesnila, N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 25, 1012-1019 (2005).
  4. Zeynalov, E., Jones, S. M., Seo, J. W., Snell, L. D., Elliott, J. P. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice. PloS one. 10, e0136121 (2015).
  5. Med Lett Drugs Ther.. Conivaptan (Vaprisol) for hyponatremia. The Medical letter on drugs and therapeutics. 48, 51-52 (2006).
  6. Zhao, X. Y., et al. Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils. Neuropeptides. 51, 55-62 (2015).
  7. Manaenko, A., Chen, H., Kammer, J., Zhang, J. H., Tang, J. Comparison Evans Blue injection routes: Intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods. 195, 206-210 (2011).
  8. Adams, S., Pacharinsak, C. Mouse anesthesia and analgesia. Curr Protoc Mouse Biol. 5, 51-63 (2015).
  9. Zeynalov, E., et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 36, 2634-2640 (2008).
  10. Zeynalov, E., Dore, S. Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox Res. 15, 133-137 (2009).
  11. Zeynalov, E., Nemoto, M., Hurn, P. D., Koehler, R. C., Bhardwaj, A. Neuroprotective effect of selective kappa opioid receptor agonist is gender specific and linked to reduced neuronal nitric oxide. J Cereb Blood Flow Metab. 26, 414-420 (2006).
  12. Ma, M. C., Qian, H., Ghassemi, F., Zhao, P., Xia, Y. Oxygen-sensitive {delta}-opioid receptor-regulated survival and death signals: novel insights into neuronal preconditioning and protection. J Biol Chem. 280, 16208-16218 (2005).
  13. Ahmad, M., Zhang, Y., Liu, H., Rose, M. E., Graham, S. H. Prolonged opportunity for neuroprotection in experimental stroke with selective blockade of cyclooxygenase-2 activity. Brain Res. 1279, 168-173 (2009).
  14. Meisel, C., et al. Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke. Stroke. 35, 2-6 (2004).
  15. Miner, N. A., Koehler, J., Greenaway, L. Intraperitoneal injection of mice. Appl Microbiol. 17, 250-251 (1969).
  16. Adis International Limited. Conivaptan: YM 087. Drugs in R&D. 5, 94-97 (2004).
  17. Murphy, T., Dhar, R., Diringer, M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 11, 14-19 (2009).
  18. Liu, X., Nakayama, S., Amiry-Moghaddam, M., Ottersen, O. P., Bhardwaj, A. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke. Neurocrit Care. 12, 124-131 (2010).
  19. Wallace, B. K., Jelks, K. A., O'Donnell, M. E. Ischemia-induced stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransport involves p38 and JNK MAP kinases. Am J Physiol Cell Physiol. 302, C505-C517 (2012).
  20. O'Donnell, M. E., et al. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger. J Cereb Blood Flow Metab. 33, 225-234 (2013).
  21. Walcott, B. P., Kahle, K. T., Simard, J. M. Novel treatment targets for cerebral edema. Neurotherapeutics. 9, 65-72 (2012).
  22. Shen, Z., et al. Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury. CNS Neurosci Ther. 21, 271-279 (2015).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved